Topic Review
Biochar-Based Materials for Wastewater Treatment
Biochar is an important, interesting, low-cost material with various agricultural, industrial, and scientific applications. Biochar is a name given to vegetable-derived charcoal, which can be used as an agent to improve soil and water quality. This carbon-rich substance can be produced by the carbonization of biomass residues (e.g., wood, dung, manure, or leaves) in thermal conversion processes, such as pyrolysis, torrefaction, and hydrothermal carbonization (HTC). Among them, pyrolysis is the most common process to obtain biochar under anaerobic conditions and high temperatures. In addition, heat, syngas, liquid fuels, and pyroligneous acid (wood vinegar) are also generated during this process.
  • 205
  • 18 Jan 2024
Topic Review
Graphene-Based Implantable Electrodes for Neural Recording/Stimulation
Implantable electrodes represent a groundbreaking advancement in nervous system research, providing a pivotal tool for recording and stimulating human neural activity. This capability is integral for unraveling the intricacies of the nervous system’s functionality and for devising innovative treatments for various neurological disorders. Implantable electrodes offer distinct advantages compared to conventional recording and stimulating neural activity methods. Crucially, the development of implantable electrodes necessitates key attributes: flexibility, stability, and high resolution. Graphene emerges as a highly promising material for fabricating such electrodes due to its exceptional properties. It boasts remarkable flexibility, ensuring seamless integration with the complex and contoured surfaces of neural tissues. 
  • 200
  • 18 Jan 2024
Topic Review
Linear Energy Transfer Effects on Cystamine’s Radioprotective Activity
Radioprotective agents are increasingly drawing attention for their potential uses in various critical fields.  These include radiotherapy, which is crucial in cancer treatment, as well as public health medicine to safeguard against the health impacts of radiation.  Moreover, they are vital in emergency scenarios involving massive accidental radiation exposure or impending radiological crises.  Among these agents, cystamine, an organic diamino–disulfide compound, is particularly noted for its dual capabilities: it acts as a shield against radiation damage and also functions as a potent antioxidant.
  • 148
  • 17 Jan 2024
Topic Review
Main Group Metals and Metalloids in Cancer Treatment
Cancer is one of the leading causes of human death among all major diseases. Metal-based complexes are considered as the most promising vital part in the existing arsenal of cytotoxic candidates used in cancer therapy and diagnostics. The efforts of many scientific groups resulted in the development of numerous metal-based compounds featuring different biologically active organic ligands in order to modulate their bioactivity.
  • 260
  • 17 Jan 2024
Topic Review
Electrochemical Sensors for Formaldehyde
Formaldehyde, a ubiquitous indoor air pollutant, plays a significant role in various biological processes, posing both environmental and health challenges.
  • 268
  • 17 Jan 2024
Topic Review
Chlorine in an Organic Molecule
Due to the electronic configuration of the atom and charge of the nucleus, the chlorine in organic molecules can exert a variety of effects. It can depart as a chloride anion in the process of substitution and elimination, facilitates the abstraction of protons and stabilizes generated carbanions, exerts moderate stabilizing effect of carbenes, carbocations and radicals. There are frequent cases where chlorine substituent promotes more than one transformation. 
  • 117
  • 17 Jan 2024
Topic Review
Structure and Properties of Graphene Quantum Dots
Graphene quantum dot (GQD) is a new type of carbon nanometer material. In addition to the excellent properties of graphene, it is superior due to the quantum limit effect and edge effect. Because of its advantages such as water solution, strong fluorescent, small size, and low biological toxicity, it has important application potential in various fields, especially in sensors and biomedical areas, which are mainly used as optical electrical sensors as well as in biological imaging and tumor therapy. In addition, GQDs have very important characteristics, such as optical and electrical properties. There are many preparation methods, divided into top-down and bottom-up methods, which have different advantages and disadvantages, respectively. In addition, the modification methods include heterogeneous doping, surface heterogeneity, etc. 
  • 226
  • 17 Jan 2024
Topic Review
Bismuth-Based Composites for Energy Storage Systems
Bismuth (Bi) has been prompted many investigations into the development of next-generation energy storage systems on account of its unique physicochemical properties. Although there are still some challenges, the application of metallic Bi-based materials in the field of energy storage still has good prospects. 
  • 179
  • 17 Jan 2024
Topic Review
Additive Manufacturing (3D/4D Printing) Technologies
The scientific community is and has constantly been working to innovate and improve the available technologies in our use. In that effort, three-dimensional (3D) printing was developed that can construct 3D objects from a digital file. Three-dimensional printing, also known as additive manufacturing (AM), has seen tremendous growth over the last three decades, and in the last five years, its application has widened significantly. Three-dimensional printing technology has the potential to fill the gaps left by the limitations of the current manufacturing technologies, and it has further become exciting with the addition of a time dimension giving rise to the concept of four-dimensional (4D) printing, which essentially means that the structures created by 4D printing undergo a transformation over time under the influence of internal or external stimuli.
  • 183
  • 16 Jan 2024
Topic Review
Electrochemical Energy Storage Devices
Among electrochemical energy storage (EES) technologies, rechargeable batteries (RBs) and supercapacitors (SCs) are the two most desired candidates for powering a range of electrical and electronic devices. The RB operates on Faradaic processes, whereas the underlying mechanisms of SCs vary, as non-Faradaic in electrical double-layer capacitors (EDLCs), Faradaic at the surface of the electrodes in pseudo-capacitors (PCs), and a combination of both non-Faradaic and Faradaic in hybrid supercapacitors (HSCs). EDLCs offer high power density but low energy density. HSCs take advantage of the Faradaic process without compromising their capacitive nature. Unlike batteries, supercapacitors provide high power density and numerous charge–discharge cycles; however, their energy density lags that of batteries. Supercapatteries, a generic term that refers to hybrid EES devices that combine the merits of EDLCs and RBs, have emerged, bridging the gap between SCs and RBs. 
  • 706
  • 16 Jan 2024
  • Page
  • of
  • 465
Video Production Service