Topic Review
Innovative Application of Metallic PCMs in Metal Casting
Phase Change Materials (PCMs) are materials that release or absorb sufficient latent heat at a constant temperature or a relatively narrow temperature range during their solid/liquid transformation to be used for heating or cooling purposes. Although the use of PCMs has increased significantly in recent years, their major applications are limited to Latent Heat Storage (LHS) applications, especially in solar energy systems and buildings. Metallic PCMs appear to be the best alternative to salts and organic materials due to their high conductivity, high latent heat storage capacity and wide-ranging phase change temperature. Recent studies indicate that besides their conventional applications, metallic PCMs can be used in casting design to control the solidification microstructure as well as the feedability and defect formation in castings. Use of metallic PCM-fitted chillers is believed to open new horizons in smart control of the casting structure.
  • 716
  • 23 Jun 2022
Topic Review
Abrasive Wear of Cermets
Abrasive wear occurs when hard particles or sometimes hard protuberances on a counterface are forced against and are moved along the surface. The amount of material removed depends on the normal load pressing particles against the surface and the sliding distance. A distinction is usually made between the two-body and the three-body abrasive wear and between low-stress (abrasive particles remain unbroken during abrasion) and high-stress (abrasive particles are broken during the wear process) abrasion. WC-based hardmetals (cemented carbides) are employed widely as wear-resistant ceramic-metal composites for tools and wear parts. Raw materials supply, environmental concerns and some limitations of hardmetals have directed efforts toward development of alternative wear-resistant composites-cermets. Cermets consist primarily of ceramic particles such as titanium carbonitride (Ti(C,N)), titanium carbide (TiC), and chromium carbide (Cr3C2) bonded with alloys of Ni, Co or Fe. Cermets as resistant to abrasive wear materials demonstrate their potential mainly in environmentally severe wear conditions – at elevated temperatures and corrosive envronments.
  • 681
  • 10 Jan 2022
Topic Review
Steel Structural Property Correlation
The behaviour of plain carbon, as well as, structural steel is qualitatively different at different regimes of strain rates and temperature when they are subjected to hot-working and impact-loading conditions. Ambient temperature and carbon content are the leading factors governing the deformation behaviour and substructural evolution of these steels.
  • 676
  • 29 Jul 2022
Topic Review
Organization of Indian Steel Sector
Steel manufacturing is a technologically complex industry having subsequent linkages in terms of material flow and plays a vital role in determining infrastructure and the overall development of a country. The global steel industry and its supply chain constitute 40 million jobs across the world. In 2019, India established itself as the second-largest steel producer with 111.3 million tons, constituting 5.9% of total crude steel production on the planet for the respective year, and it has ambitious plans to produce 250 million tons by 2030 with a per capita consumption aim of 160 kg.
  • 664
  • 20 Apr 2022
Topic Review
Cadmium Recovery from Spent Ni-Cd Batteries
The significant increase in the demand for efficient electric energy storage during the last decade has promoted an increase in the production and use of Cd-containing batteries. On the one hand, the amount of toxic Cd-containing used batteries is growing, while on the other hand, Cd is on a list of critical raw materials (for Europe). Both of these factors call for the development of effective technology for Cd recovery from spent batteries. Alkaline nickel-cadmium (Ni-Cd) batteries are widely used as autonomous sources of industrial and household current (power banks) due to a successful combination of feasibility studies and achieved sustainable electrical characteristics. In recent decades, the market of secondary current sources for portable equipment has undergone significant changes, which leads to an intensive replacement of Ni-Cd batteries with lithium-ion (LIB) and nickel-metal-hydride.
  • 644
  • 07 Feb 2022
Topic Review
Influence of Cold Spray Parameters on Bonding Mechanisms
The cold spray process is governed by the impact of high velocity feedstock particles onto a substrate without melting. Hence, the bulk material properties are retained. However, it is challenging to achieve good adhesion strength. The adhesion strength depends on factors such as the cold spray process parameters, substrate conditions, coating/substrate interactions at the interface and feedstock material properties. This entry examines fundamental studies concerning the adhesion mechanisms of cold spray technology and considers the effect of cold spray input parameters such as temperature, stand-off-distance, pressure, process gas, spray angle, and traverse speed of the cold spray torch on the bonding mechanism and adhesion strength. Furthermore, the effects of substrate conditions such as temperature, hardness, roughness and material on the adhesion mechanism are highlighted. The effect of feedstock properties, such as feed rate, shape and size are summarized. Understanding the effect of these parameters is necessary to obtain the optimal input parameters that enable the best interfacial properties for a range of coating/substrate material combinations. It is expected that feedstock of spherical morphology and small particle size (<15 μm) provides optimal interfacial properties when deposited onto a mirror-finished substrate surface using high pressure cold spray. Deep insights into each parameter exposes the uncovered potential of cold spray as an additive manufacturing method.
  • 621
  • 11 Jan 2022
Topic Review
Sn on Ag-Based Brazing Filler Metals
Ag-based brazing filler metals containing Sn have been widely applied in many engineering fields. By summarizing the effects of Sn on the melting temperature, wettability and microstructure, and mechanical properties of the filler metals, the Sn element can significantly decrease the melting point and improve the wettability, and proper addition of Sn can optimize the microstructure and improve the comprehensive properties of the filler metals, while excessive addition of Sn will form brittle IMCs and decrease the mechanical properties of the filler metals.
  • 594
  • 29 Nov 2021
Topic Review
Fatigue Shear-band in Metallic Glass
Metallic glass (MG) is a class of metallic material fabricated by the fast-cooling during solidification. This alloy lacks the long-range order characteristic and the crystalline defects including grain boundaries and dislocations. The unique structural feature makes some mechanical properties of MG obviously superior than conventional crystalline alloys, such as strength, hardness, elastic limit, wear resistance, etc. It is estimated that ~90% of all mechanical failures in the structural materials are caused by fatigue. Thus, the fatigue property is an important evaluation index before a new structural material application. Without the dislocations and grain boundaries, the plastic deformation of MG occurs in the form of atomic clusters operation at room temperature, eventually leading to the generation of shear band. It is found that the fatigue damage and fracture of MGs were dominated by shear band. As a result, understanding how shear band evolution under cyclic loading is important for improving the fatigue performance of MGs.
  • 589
  • 16 Jul 2021
Topic Review
Use of Secondary Carbon Bio-Carriers in Metallurgical Processes
The term ‘secondary carbon bio-carriers’ here refers to biomass, torrefied biomass, biochar, charcoal, or biocoke. The main focus is on torrefied biomass, which can act as a carbon source for partial or complete replacement of fossil fuel in various metallurgical processes. The material requirements for the use of secondary carbon bio-carriers in different metallurgical processes are systematized, and pathways for the use of secondary carbon bio-carriers in four main routes of steel production are described.
  • 576
  • 02 Dec 2022
Topic Review
Solid-State Welding of Steels
Welding is a joining process that permanently connects solid parts and forms components that cannot be divided without causing damage. Furthermore, welding is the most efficient and economical way to join similar or dissimilar materials with or without using filler material, heat, or external pressure. Welding can be processed in a variety of environments, including outdoors, inside, underwater, and even in outer space. The two main categories of welding methods, solid-state welding (SSW) and fusion welding, are processes to join metals. Fusion welding can be defined as the melting process of parent materials on facing surfaces with a filler material to form a weld bead. The fusion welding process comprises gas welding, arc welding, and intense-energy beam welding.
  • 572
  • 06 Jan 2023
  • Page
  • of
  • 9