1000/1000
Hot
Most Recent
| Version | Summary | Created by | Modification | Content Size | Created at | Operation |
|---|---|---|---|---|---|---|
| 1 | Simin Nosouhian | -- | 1958 | 2022-06-22 10:02:22 | | | |
| 2 | Beatrix Zheng | Meta information modification | 1958 | 2022-06-23 04:26:48 | | |
Phase Change Materials (PCMs) are materials that release or absorb sufficient latent heat at a constant temperature or a relatively narrow temperature range during their solid/liquid transformation to be used for heating or cooling purposes. Although the use of PCMs has increased significantly in recent years, their major applications are limited to Latent Heat Storage (LHS) applications, especially in solar energy systems and buildings. Metallic PCMs appear to be the best alternative to salts and organic materials due to their high conductivity, high latent heat storage capacity and wide-ranging phase change temperature. Recent studies indicate that besides their conventional applications, metallic PCMs can be used in casting design to control the solidification microstructure as well as the feedability and defect formation in castings. Use of metallic PCM-fitted chillers is believed to open new horizons in smart control of the casting structure.
An innovative application of PCMs is the use of multiple PCMs (M-PCMs) with different thermophysical properties to increase TES efficiency and reduce the thermal energy lost. In this method, every PCM has a different melting temperature and latent heat and is activated at a corresponding temperature range absorbing/releasing a certain amount of heat [21][22][23]. In Figure 1, for instance, a multiple low melting point metallic PCM (M-LMPM-PCM) system is proposed to manage the temperature of a heat transfer fluid (HTF). In this system, four LMPM-PCMs are in a descending melting temperature arrangement from the input heat. During the charging process, the temperature of the HTF drops as it flows in from the left-hand side. However, all the PCMs can still be melted to release their latent heat and keep the HTF at the desired temperature range. During the discharging process, the temperature of the cold HTF entering the channel from the right increases gradually as it absorbs the latent heat of the solidification of the lower melting point PCMs. This provides for the melting of the higher melting point PCMs at the left side of the channel.


Some innovative applications of LMPM-PCMs in foundry and casting design were recently introduced by the researchers. Many of people's everyday items, as well as some of the most sophisticated engineering components, are made by casting. Control of the solidification microstructure during casting is vital for achieving the required mechanical properties and performance of the cast parts. Some of the traditional methods developed to control the solidification structure include controlling the cooling rate [27][28] and pouring temperature [29], grain refinement [28][30], dynamic nucleation [31], application of pressure [32], semisolid casting [33], application of magnetic and electric fields [34], superheat treatment [35] and directional solidification [36].
Recently, Noohi et al. [37] introduced an innovative method to control the solidification microstructure of an aluminum alloy. They used pure zinc as PCM embedded in a steel chill to affect the cast macrostructure of an Al-4.5 wt% Cu alloy. A schematic of the experimental setup is shown in Figure 3. They poured two identical castings, one chilled with a solid steel block and the other chilled with a steel container filled with pure zinc with the same overall cooling capacity. They showed that zinc in the latter melted after a given period of time and absorption of its latent heat of melting from the aluminum melt affected the cooling conditions and macrostructure of the casting.


In another work on an Al-Cu alloy, Noohi [38] demonstrated the change in morphology of feathery grains using zinc PCM. In other works by this group, Fathi and Niroumand [39] have examined the effects of aluminum, zinc and tin PCMs on the macrostructure, feedability and defect formation in some brass and aluminum alloys. They also studied the effects of PCM on the structure of a transparent model material by in situ observation of solidification [40]. These emerging results indicate the potential of metallic PCMs in smart tailoring of the solidification structure of castings by judicious selection of the type, dimensions and location of PCMs in casting molds.
Using PCM-fitted chillers is believed to open new horizons in smart control of the casting structure. The structure of conventional castings is typically comprised of three distinct regions of chill, columnar and central zone of large equiaxed grains due to the inevitable gradual decrease in the cooling rate and thermal gradient in front of the solidification front. Employing properly selected and designed PCM-fitted chiller(s) in the mold, one may produce completely uniform macro- and microstructures across the castings, or castings that have finer microstructure in the center, or even periodic or functionally graded microstructures across the castings. This requires design and strategic planting of a number PCM (or M-PCMs) fitted chillers that become active at predetermined stages during solidification of the casting. The concept can also be employed for promoting directional solidification, increasing the feeding distance, removing hard-to-feed hot spots, and changing the location of porosity formation in the castings.
Metallic PCMs may be integrated in the feeder design to increase the feeder life. The concept is that after pouring the molten metal in the mold, a molten metallic PCM is poured in specially designed channels around the feeder neck. The latent heat released by solidification of the molten PCM is transferred to the neck and hinders its solidification to increase the feeding time and casting yield.