Topic Review
Furane-Based Photoinitiators of Polymerization
Photopolymerization is an active research field enabling to polymerize in greener conditions than that performed with traditional thermal polymerization. A great deal of effort is devoted to developing visible light photoinitiating systems. Indeed, the traditional UV (Ultra Violet) photoinitiating systems are currently the focus of numerous safety concerns so alternatives to UV light are being actively researched. However, visible light photons are less energetic than UV photons so the reactivity of the photoinitiating systems should be improved to address this issue. In this field, furane constitutes an interesting candidate for the design of photocatalysts of polymerization due to its low cost and its easy chemical modification.
  • 18
  • 09 Mar 2023
Topic Review
Agricultural Applications of Superabsorbent Polymer Hydrogels
Although natural polymers, such as various polysaccharides, have undoubted advantages related to their biocompatibility, biodegradability, and low cost, they are inferior to synthetic polymers in terms of water absorption and water retention properties. In this regard, the most promising are semi-synthetic polymeric superabsorbents based on natural polymers modified with additives or grafted chains of synthetic polymers, which can combine the advantages of natural and synthetic polymeric hydrogels without their disadvantages. Such semi-synthetic polymers are of great interest for agricultural applications, especially in dry regions, also because they can be used to create systems for the slow release of nutrients into the soil, which are necessary to increase crop yields using environmentally friendly technologies.
  • 35
  • 02 Mar 2023
Topic Review
Hybrid Reinforced Polymer Matrix Composites
The use of composite materials has seen many new innovations for a large variety of applications. The area of reinforcement in composites is also rapidly evolving with many new discoveries, including the use of hybrid fibers, sustainable materials, and nanocellulose.
  • 96
  • 22 Feb 2023
Topic Review
Design and Synthesis of Sidechain Phosphorus-Containing Polyacids
Macromolecules containing acidic fragments in side-groups—polyacids—occupy a special place among synthetic polymers. Properties and applications of polyacids are directly related to the chemical structure of macromolecules: the nature of the acidic groups, polymer backbone, and spacers between the main chain and acidic groups. The chemical nature of the phosphorus results in the diversity of acidic >P(O)OH fragments in sidechain phosphorus-containing polyacids (PCPAs) that can be derivatives of phosphoric or phosphinic acids.
  • 48
  • 13 Feb 2023
Topic Review
Synthesis of Polymers for Electrospun Nanofiber Membranes
The use of nanofiber a filtering medium is well established, and the electrospun nanofiber have several applications such as electrospun fibers for air purification and air filtration media. The different characteristics of nanofibers as morphologies, mechanical and optical properties, thermal stability, electrical conductivity, photocatalytic activity and bioactivity underlie their macromolecular structure and chemical composition. 
  • 69
  • 08 Feb 2023
Topic Review
Polysaccharide-Based Hydrogels Drug Delivery in Cancer Therapy
Hydrogels are three-dimensional crosslinked structures with physicochemical properties similar to the extracellular matrix (ECM). By changing the hydrogel’s material type, crosslinking, molecular weight, chemical surface, and functionalization, it is possible to mimic the mechanical properties of native tissues. Hydrogels are currently used in the biomedical and pharmaceutical fields for drug delivery systems, wound dressings, tissue engineering, and contact lenses. Polysaccharide-based hydrogels can be used as drug delivery systems for the efficient release of various types of cancer therapeutics, enhancing the therapeutic efficacy and minimizing potential side effects.
  • 70
  • 01 Feb 2023
Topic Review
Microplastics Derived from Food Packaging Waste
Plastics are commonly used for packaging in the food industry. The most popular thermoplastic materials that have found such applications are polyethylene (PE), polypropylene (PP), poly(ethylene terephthalate) (PET), and polystyrene (PS). Unfortunately, most plastic packaging is disposable. As a consequence, significant amounts of waste are generated, entering the environment, and undergoing degradation processes. They can occur under the influence of mechanical forces, temperature, light, chemical, and biological factors. These factors can present synergistic or antagonistic effects. As a result of their action, microplastics are formed, which can undergo further fragmentation and decomposition into small-molecule compounds. During the degradation process, various additives used at the plastics’ processing stage can also be released. Both microplastics and additives can negatively affect human and animal health.
  • 69
  • 29 Jan 2023
Topic Review
Sustainable Polymeric Food Packaging Films
Food packaging is fundamental to ensuring food distribution and protection around the world, especially when considering the solid growth of the population. Without packaging, food would easily spoil and the distribution of enormous quantities of food, raw and processed, to different areas around the globe would hardly be possible.
  • 91
  • 16 Jan 2023
Topic Review
Electrospun Polymer Nanofibers
Electrospun polymer nanofibers constitute one of the most important nanomaterials with diverse applications. Nanofibers are classified as fibers with a ratio of length to thickness in the order of one thousand, or nanomaterials that have at least one dimension of 100 nm or less. A nanofiber with a diameter of ∼100 nm can have a specific surface area up to 1000 m2/g. Nanofibers can be produced by selecting the proper combination of polymers and additives, and using appropriate production techniques based on several essential characteristics that impact criteria of the intended particular application area. Electrospinning of polymer nanofibers is a widely used for investigation of their properties for uses in quite diverse applications. Attractive properties of electrospun nanofibers include the extremely high specific surface area, high porosity (typically 90%), light weight, controllable pore size, flexibility in surface functionalities, large permeability, excellent mechanical properties, high aspect ratio, and length up to many centimeters. Due to their exceptional characteristics, electrospun polymer nanofibers are used in many applications, which include biomedical technology, such as tissue engineering, wound healing and dressing, and drug delivery systems. In addition they have diverse uses in  sensors and biosensors applications, air filtration, defense applications, energy devices and protective textiles.
  • 92
  • 12 Jan 2023
Topic Review
Design and Synthesis of Polyphosphodiesters
Polyacids containing –P(O)(OH)– fragment in the polymer backbone, or polyphosphodiesters (PPDEs), hold a special place among natural and synthetic polymers. The structural similarity of PPDEs to natural nucleic and teichoic acids, biocompatibility of PPDEs and their mimicking to biomolecules providing the ‘stealth effect’, high bone mineral affinity of PPDEs, and adjustable hydrolytic stability of PPDEs are the basis for various biomedical, industrial and household applications. Actual synthetic approaches to PPDEs are based on incredibly rich chemistry of organic phosphates and phosphonates, and include modern techniques such as catalytic ring-opening polymerization (ROP), acyclic diene metathesis (ADMET) polycondensation, and others.
  • 73
  • 09 Jan 2023
  • Page
  • of
  • 35