Topic Review
Recycling of Multilayer Waste Films
In a circular economy context with the dual problems of depletion of natural resources and the environmental impact of a growing volume of wastes, it is of great importance to focus on the recycling process of multilayered plastic films. First to the general concepts and summary of plastic waste management in general, making emphasis on the multilayer films recycling process. Then, in the second part, the focus is dealing with multilayer films manufacturing process, including the most common materials used for agricultural applications, their processing, and the challenges of their recycling, recyclability, and reuse. Hitherto, some prospects are discussed from eco-design to mechanical or chemical recycling approaches.
  • 992
  • 20 Jun 2022
Topic Review
Hydrogels and Dentin–Pulp Complex Regeneration
Abstract Dentin–pulp complex is a term which refers to the dental pulp (DP) surrounded by dentin along its peripheries. Dentin and dental pulp are highly specialized tissues, which can be affected by various insults, primarily by dental caries. Regeneration of the dentin–pulp complex is of paramount importance to regain tooth vitality. The regenerative endodontic procedure (REP) is a relatively current approach, which aims to regenerate the dentin–pulp complex through stimulating the differentiation of resident or transplanted stem/progenitor cells. Hydrogel-based scaffolds are a unique category of three dimensional polymeric networks with high water content. They are hydrophilic, biocompatible, with tunable degradation patterns and mechanical properties, in addition to the ability to be loaded with various bioactive molecules. Furthermore, hydrogels have a considerable degree of flexibility and elasticity, mimicking the cell extracellular matrix (ECM), particularly that of the DP. The current review presents how for dentin–pulp complex regeneration, the application of injectable hydrogels combined with stem/progenitor cells could represent a promising approach. According to the source of the polymeric chain forming the hydrogel, they can be classified into natural, synthetic or hybrid hydrogels, combining natural and synthetic ones. Natural polymers are bioactive, highly biocompatible, and biodegradable by naturally occurring enzymes or via hydrolysis. On the other hand, synthetic polymers offer tunable mechanical properties, thermostability and durability as compared to natural hydrogels. Hybrid hydrogels combine the benefits of synthetic and natural polymers. Hydrogels can be biofunctionalized with cell-binding sequences as arginine–glycine–aspartic acid (RGD), can be used for local delivery of bioactive molecules and cellularized with stem cells for dentin–pulp regeneration. Formulating a hydrogel scaffold material fulfilling the required criteria in regenerative endodontics is still an area of active research, which shows promising potential for replacing conventional endodontic treatments in the near future.
  • 985
  • 28 Sep 2021
Topic Review
Antimicrobial Properties of Lignocellulosic Materials
Pathogenic microbes are a major source of health and environmental problems, mostly due to their easy proliferation on most surfaces. Currently, new classes of antimicrobial agents are under development to prevent microbial adhesion and biofilm formation. However, they are mostly from synthetic origin and present several disadvantages. The use of natural biopolymers such as cellulose, hemicellulose, and lignin, derived from lignocellulosic materials as antimicrobial agents has a promising potential. Lignocellulosic materials are one of the most abundant natural materials from renewable sources, and they present attractive characteristics, such as low density and biodegradability, are low-cost, high availability, and environmentally friendly.
  • 985
  • 08 Apr 2021
Topic Review
PEDOT:PSS/Nonionic WPU
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has the merits of high electrical conductivity and solution processability, and can be dispersed in water. To improve the stretchability of PEDOT:PSS-based transparent electrode films, the intrinsically conducting polymer PEDOT:PSS was blended with highly stretchable nonionic waterborne polyurethane (WPU) and coated on a thermoplastic polyurethane (TPU) film. Nonionic WPU has good compatibility with PEDOT:PSS, without affecting the acidity. 
  • 978
  • 16 Mar 2022
Topic Review
Smart Bioinks for Printing Human Tissue Models
A bioink is a mixture of materials and biological molecules or cells to be used for bioprinting. Most bioinks are hydrogels, highly hydrated polymeric networks used to homogenously encapsulate cells by mimicking the natural extracellular matrix found in vivo. Hydrogels must meet certain characteristics to ensure they can support cell survival and function.
  • 973
  • 25 Apr 2022
Topic Review
Polymers in High-Efficiency Solar Cells
Third-generation solar cells, including dye-sensitized solar cells, bulk-heterojunction solar cells, and perovskite solar cells, are being intensively researched to obtain high efficiencies in converting solar energy into electricity. However, it is also important to note their stability over time and the devices’ thermal or operating temperature range. Today’s widely used polymeric materials are also used at various stages of the preparation of the complete device—it is worth mentioning that in dye-sensitized solar cells, suitable polymers can be used as flexible substrates counter-electrodes, gel electrolytes, and even dyes. In the case of bulk-heterojunction solar cells, they are used primarily as donor materials; however, there are reports in the literature of their use as acceptors. In perovskite devices, they are used as additives to improve the morphology of the perovskite, mainly as hole transport materials and also as additives to electron transport layers. Polymers, thanks to their numerous advantages, such as the possibility of practically any modification of their chemical structure and thus their physical and chemical properties, are increasingly used in devices that convert solar radiation into electrical energy.
  • 970
  • 17 May 2022
Topic Review
Methods of Preparation of UHMWPE Membranes
One of the materials that attracts attention as a potential material for membrane formation is ultrahigh molecular weight polyethylene (UHMWPE). The methods used to prepare membranes from semicrystalline (SC) polymers, including UHMWPE, can be divided into two main groups: solvent-free and solvent-based methods.
  • 970
  • 30 Nov 2022
Topic Review
Li-ion Batteries
With the ever-growing energy storage notably due to the electric vehicle market expansion and stationary applications, one of the challenges of lithium batteries lies in the cost and environmental impacts of their manufacture. The main process employed is the solvent-casting method, based on a slurry casted onto a current collector. The disadvantages of this technique include the use of toxic and costly solvents as well as significant quantity of energy required for solvent evaporation and recycling. A solvent-free manufacturing method would represent significant progress in the development of cost-effective and environmentally friendly lithium-ion and lithium metal batteries.
  • 967
  • 11 Jan 2022
Topic Review
Biopolymer-Based Food Packaging Materials
Biopolymer-based packaging materials have become of greater interest to the world due to their biodegradability, renewability, and biocompatibility. Numerous biopolymers—such as starch, chitosan, carrageenan, polylactic acid, etc.—have been investigated for their potential application in food packaging. Reinforcement agents such as nanofillers and active agents improve the properties of the biopolymers, making them suitable for active and intelligent packaging.
  • 962
  • 28 Jun 2023
Topic Review
Polyisoprene Rubber
Rubber materials have been used in a wide range of applications, from automotive parts to special-design engineering pieces, as well as in the pharmaceutical, food, electronics, and military industries, among others. Since the discovery of the vulcanization of natural rubber (NR) in 1838, the continuous demand for this material has intensified the quest for a synthetic substitute with similar properties.
  • 959
  • 25 Oct 2023
  • Page
  • of
  • 46
ScholarVision Creations