Topic Review
Crystal and Electronic Structure of Perovskite Oxides
Perovskites have been proven to be the one of best cathodes for the solid oxide electrolyte cell (SOEC) devices, in particular, Co-based ones usually exhibit extremely high catalytic performances due to the multivalent properties of Co ions. Thorough understanding of the crystal and electronic structure of perovskite oxides are important.
  • 529
  • 02 Nov 2022
Topic Review
Relevance of Crystal Forms in the Pharmaceutical Field
The existence of multiple crystal forms of an active pharmaceutical ingredients (API) is relevant not only for the selection of the best solid material to carry through the various stages of drug development, including the choice of dosage and of excipients suitable for drug development and marketing, but also in terms of intellectual property protection and/or extension. This is because the physico-chemical properties, such as solubility, dissolution rate, thermal stability, processability, etc., of the solid API may depend, sometimes dramatically, on the crystal form, with important implications on the drug’s ultimate efficacy.
  • 823
  • 26 Aug 2022
Topic Review Peer Reviewed
Homogenization Methods of Lattice Materials
The existing methods for analyzing the behaviors of lattice materials require high computational power. The homogenization method is the alternative way to overcome this issue. Homogenization is an analysis to understand the behavior of an area of lattice material from a small portion for rapid analysis and precise approximation. This paper provides a summary of some representative methodologies in homogenization.
  • 648
  • 06 Jun 2022
Topic Review
The Nitrogen Bond
The nitrogen bond in chemical systems occurs when there is evidence of a net attractive interaction between the electrophilic region associated with a covalently or coordinately bound nitrogen atom in a molecular entity and a nucleophile in another, or the same molecular entity. It is the first member of the family of pnictogen bonds formed by the first atom of the pnictogen family, Group 15, of the periodic table, and is an inter- or intra-molecular non-covalent interaction.
  • 1.9K
  • 25 Mar 2022
Topic Review
Disruption of Claudin-Made Tight Junction Barriers by CpE
Claudins are a family of integral membrane proteins that enable epithelial cell/cell interactions by localizing to and driving the formation of tight junctions. Via claudin self-assembly within the membranes of adjoining cells, their extracellular domains interact, forming barriers to the paracellular transport of small molecules and ions. The bacterium Clostridium perfringens causes prevalent gastrointestinal disorders in mammals by employing an enterotoxin (CpE) that targets claudins. CpE binds to claudins at or near tight junctions in the gut and disrupts their barrier function, potentially by disabling their assembly or via cell signaling means—the mechanism(s) remain unclear.
  • 398
  • 10 Mar 2022
Topic Review
The Phosphorus Bond
The phosphorus bond in chemical systems, which is an inter- or intramolecular noncovalent interaction, occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a covalently or coordinately bonded phosphorus atom in a molecular entity and a nucleophile in another, or the same, molecular entity. It is the second member of the family of pnictogen bonds, formed by the second member of the pnictogen family of the periodic table. 
  • 1.9K
  • 07 Mar 2022
Topic Review
Germanium Ion Implantation and Annealing
Germanium (Ge) ion implantation into silicon waveguides will induce lattice defects in the silicon, which can eventually change the crystal silicon into amorphous silicon and increase the refractive index from 3.48 to 3.96. A subsequent annealing process, either by using an external laser or integrated thermal heaters can partially or completely remove those lattice defects and gradually change the amorphous silicon back into the crystalline form and, therefore, reduce the material’s refractive index.  In addition, Ge ion implantation and annealing are also demonstrated to enable post-fabrication trimming of ring resonators and Mach–Zehnder interferometers and to implement nonvolatile programmable photonic circuits. 
  • 1.3K
  • 01 Mar 2022
Topic Review
Inhibitor-Enzyme Complexes for New Anti-TB Agents
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is the most devastating human pathogen, as confirmed by the latest TB Report published in October.
  • 393
  • 23 Jan 2022
Topic Review
Recent Advances in Fabricating Wurtzite AlN
As a representative ultrawide bandgap (UWBG) semiconductor material, wurtzite aluminum nitride (AlN) material has many excellent properties such as high electron mobility (1100 cm2/Vs), high breakdown voltage (11.7 MV/cm), high piezoelectric coefficient, high thermal conductivity (320 W/m·K), high hardness (nine on the Mohs scale), high corrosion resistance, high chemical and thermal stability, as well as high bulk acoustic wave velocity (11,270 m/s).
  • 524
  • 10 Jan 2022
Topic Review
Cubic Silicon Carbide
The cubic silicon carbide is the only polytype that can be grown on silicon wafers. This approach reduces the cost as no SiC substrate is used and only the silicon carbide layer thickness required for the specific application is grown on a cheaper Si substrate. This technology also offers the potential for faster scale-up with wafer size compared with the development of larger diameter hexagonal SiC wafers. In principle, with a large reactor, a 300 mm Si wafer can be obtained using the present process.
  • 676
  • 15 Dec 2021
  • Page
  • of
  • 4