Topic Review
Non-equilibrium Thermodynamic Foundations of the Origin of Life
There is little doubt that life’s origin followed from the known physical and chemical laws of Nature. The most general scientific framework incorporating the laws of Nature and applicable to most known processes to good approximation, is that of thermodynamics and its extensions to treat out-of-equilibrium phenomena. The event of the origin of life should therefore also be amenable to such an analysis. The Thermodynamic Dissipation Theory of the Origin and Evolution of Life postulates that the first molecules of life (the fundamental molecules) were, at their origin, pigments dissipatively structured through photochemical and chemical reactions on the surface of the oceans from simpler and more common precursor molecules in water under the solar long-wavelength UVC (205–285 nm) light of the Archean. They were “designed” by Nature to carry out this thermodynamic imperative of absorbing light in this UVC region and then to dissipate it into heat (longer wavelength photons) released into the environment. 
  • 600
  • 13 Apr 2022
Topic Review
Chemical Beam Epitaxy
Chemical beam epitaxy (CBE) forms an important class of deposition techniques for semiconductor layer systems, especially III-V semiconductor systems. This form of epitaxial growth is performed in an ultrahigh vacuum system. The reactants are in the form of molecular beams of reactive gases, typically as the hydride or a metalorganic. The term CBE is often used interchangeably with metal-organic molecular beam epitaxy (MOMBE). The nomenclature does differentiate between the two (slightly different) processes, however. When used in the strictest sense, CBE refers to the technique in which both components are obtained from gaseous sources, while MOMBE refers to the technique in which the group III component is obtained from a gaseous source and the group V component from a solid source.
  • 598
  • 30 Nov 2022
Topic Review
Nanotechnology in Agriculture
Research has shown nanoparticles to be a groundbreaking tool for tackling many arising global issues, the agricultural industry being no exception. In general, a nanoparticle is defined as any particle where one characteristic dimension is 100nm or less. Because of their unique size, these particles begin to exhibit properties that their larger counterparts may not. Due to their scale, quantum mechanical interactions become more important than classic mechanical forces, allowing for the prevalence of unique physical and chemical properties due to their extremely high surface-to-body ratio. Properties such as cation exchange capacity, enhanced diffusion, ion adsorption, and complexation are enhanced when operating at nanoscale. This is primarily the consequence of a high proportion of atoms being present on the surface, with an increased proportion of sites operating at higher reactivities with respect to processes such as adsorption processes and electrochemical interactions. Nanoparticles are promising candidates for implementation in agriculture. Because many organic functions such as ion exchange and plant gene expression operate on small scales, nanomaterials offer a toolset that works at just the right scale to provide efficient, targeted delivery to living cells. Current areas of focus of nanotechnology development in the agricultural industry include development of environmentally conscious nanofertilizers to provide efficient ion, nutrient delivery into plant cells, and plant gene transformations to produce plants with desirable genes such as drought resistance and accelerated growth cycles. With the global population on the rise, it is necessary to make advancements in sustainable farming methods that generate higher yields in order to meet the rising food demand. However, it must be done without generating long-term consequences such as depletion of arable land or water sources, toxic runoff, or bioaccumulative toxicity. In order to meet these demands, research is being done into the incorporation of nanotechnology agriculture.
  • 598
  • 08 Nov 2022
Topic Review
Nutrition/Exercise in Upper Gastrointestinal Cancers
Malnutrition and muscle wasting are associated with impaired physical functioning and quality of life in oncology patients. Patients diagnosed with upper gastrointestinal (GI) cancers are considered at high risk of malnutrition and impaired function. Due to continuous improvement in upper GI cancer survival rates, there has been an increased focus on multimodal interventions aimed at minimizing the adverse effects of cancer treatments and enhancing survivors’ quality of life. 
  • 598
  • 28 Sep 2021
Topic Review
X-ray Images and Spectrograms with Spatial Resolution
X-ray imaging diagnostics based on Fresnel lenses are very promising as the field of view is of the order of 1 mm and even higher, and the spatial resolution can reach hundreds of nm. The obvious disadvantage of such diagnostics is the presence of the chromatic effect, which reduces the contrast of the image and leads to the need to use a rather narrow spectral range. The spectrographs with flat or curved crystals used have a satisfactory spectral resolution but cannot always provide sufficient luminosity and spatial resolution when it comes to obtaining images of plasma sources. Spectrometers with toroidal schemes do not have these disadvantages, but their surface is much more difficult to fabricate and the resulting schemes are difficult to set up because of the limitation in all six degrees of freedom.
  • 597
  • 16 Dec 2022
Topic Review
Protein Film Voltammetry
In electrochemistry, protein film voltammetry (or protein film electrochemistry, or direct electrochemistry of proteins) is a technique for examining the behavior of proteins immobilized (either adsorbed or covalently attached) on an electrode. The technique is applicable to proteins and enzymes that engage in electron transfer reactions and it is part of the methods available to study enzyme kinetics. Provided that it makes suitable contact with the electrode surface (electron transfer between the electrode and the protein is direct) and provided that it is not denatured, the protein can be fruitfully interrogated by monitoring current as a function of electrode potential and other experimental parameters. Various electrode materials can be used. Special electrode designs are required to address membrane-bound proteins.
  • 595
  • 02 Dec 2022
Topic Review
The Crab Nebula in Gamma-Rays
The Crab nebula is one of the best studied objects in the sky, second only to the Sun. It is the remnant of a supernova explosion occurred in A. D. 1054, and it represents the prototype of an entire class of supernova remnants: Pulsar Wind Nebulae. It consists of two different bright non-thermal sources — the pulsar and the nebula. Both objects have played a key role in the development of high-energy astrophysics. Thanks to their bright emission at all wavelengths, they have been observed by virtually all new astronomical instruments and have been at the origin of a wealth of important scientific discoveries.
  • 591
  • 13 Jan 2022
Topic Review
Sea Urchin-like Si@MnO2@rGO
An unique structure which can effectively reduce the volume change of Si, extend the cycle life and increase the lithium-ion battery capacity.
  • 591
  • 24 Feb 2022
Topic Review
Three-Phase
In electrical engineering, three-phase electric power systems have at least three conductors carrying alternating current voltages that are offset in time by one-third of the period. A three-phase system may be arranged in delta (∆) or star (Y) (also denoted as wye in some areas). A wye system allows the use of two different voltages from all three phases, such as a 230/400 V system which provides 230 V between the neutral (centre hub) and any one of the phases, and 400 V across any two phases. A delta system arrangement only provides one voltage magnitude, but it has a greater redundancy as it may continue to operate normally with one of the three supply windings offline, albeit at 57.7% of total capacity. Harmonic current in the neutral may become very large if nonlinear loads are connected.
  • 591
  • 17 Oct 2022
Topic Review
Astrophysics Data System
The SAO/NASA Astrophysics Data System (ADS) is an online database of over 16 million astronomy and physics papers from both peer reviewed and non-peer reviewed sources. Abstracts are available free online for almost all articles, and full scanned articles are available in Graphics Interchange Format (GIF) and Portable Document Format (PDF) for older articles. It was developed by the National Aeronautics and Space Administration (NASA), and is managed by the Smithsonian Astrophysical Observatory. ADS is a powerful research tool and has had a significant impact on the efficiency of astronomical research since it was launched in 1992. Literature searches that previously would have taken days or weeks can now be carried out in seconds via the ADS search engine, which is custom-built for astronomical needs. Studies have found that the benefit to astronomy of the ADS is equivalent to several hundred million US dollars annually, and the system is estimated to have tripled the readership of astronomical journals. Use of ADS is almost universal among astronomers worldwide, and therefore ADS usage statistics can be used to analyze global trends in astronomical research. These studies have revealed that the amount of research an astronomer carries out is related to the per capita gross domestic product (GDP) of the country in which he/she is based, and that the number of astronomers in a country is proportional to the GDP of that country, so the total amount of research done in a country is proportional to the square of its GDP divided by its population.
  • 589
  • 28 Oct 2022
  • Page
  • of
  • 131
Video Production Service