Topic Review
Secondary Metabolites Produced by Penicillium roqueforti
Filamentous fungi are an important source of natural products. The mold Penicillium roqueforti, which is well-known for being responsible for the characteristic texture, blue-green spots, and aroma of the so-called blue-veined cheeses (French Bleu, Roquefort, Gorgonzola, Stilton, Cabrales, and Valdeón, among others), is able to synthesize different secondary metabolites, including andrastins and mycophenolic acid, as well as several mycotoxins, such as Roquefortines C and D, PR-toxin and eremofortins, Isofumigaclavines A and B, festuclavine, and Annullatins D and F.
  • 389
  • 27 Apr 2023
Topic Review
Secondary Metabolites of Mangrove-Associated Strains of Talaromyces
Boosted by the general aim of exploiting the biotechnological potential of the microbial component of biodiversity, research on the secondary metabolite production of endophytic fungi has remarkably increased. Novel compounds and bioactivities have resulted from this work, which has stimulated a more thorough consideration of various natural ecosystems as conducive contexts for the discovery of new drugs. Thriving at the frontier between land and sea, mangrove forests represent one of the most valuable areas in this respect. 
  • 93
  • 23 Feb 2024
Topic Review Peer Reviewed
Saprophytic Filamentous Fungi against Helminths Affecting Captive Wild Animals
In recent decades, important modifications have been introduced in zoos in order to guarantee the welfare of captive wild animals. Thus, many of these species are housed in enclosures with access to vegetation, where they can enjoy habitats close to those in their natural surroundings, interact with the environment, etc. These habitats present beneficial conditions for some species of parasites to survive and spread. This is a very similar problem to that affecting livestock, and the same solution, based on deworming, is currently being applied. However, the free-living stages of certain parasites that develop in the soil are responsible for high rates of ground contamination throughout the year, so that animals become infected soon after successful deworming, resulting in chemical parasiticides being frequently administered. Preventive measures are seldom considered, which worsens the situation. This entry summarizes the usefulness of the dissemination of certain saprophytic filamentous fungi with proven antagonism against some of the parasites.
  • 239
  • 26 Jan 2024
Topic Review
Respiratory Epithelial Cells against Fungal Infections
The respiratory epithelium is highly complex, and its composition varies along the conducting airways and alveoli. In addition to their primary function in maintaining the respiratory barrier and lung homeostasis for gas exchange, epithelial cells interact with inhaled pathogens, which can manipulate cell signaling pathways, promoting adhesion to these cells or hosting tissue invasion. Moreover, pathogens (or their products) can induce the secretion of chemokines and cytokines by epithelial cells, and in this way, these host cells communicate with the immune system, modulating host defenses and inflammatory outcomes.
  • 457
  • 31 May 2022
Topic Review
Relevant Fusarium Mycotoxins in Malt and Beer
Mycotoxins are secondary fungal metabolites of high concern in the food and feed industry. Their presence in many cereal-based products has been numerously reported. Beer is the most consumed alcoholic beverage worldwide, and Fusarium mycotoxins originating from the malted and unmalted cereals might reach the final product. This entry aims to describe the possible Fusarium fungi that could infect the cereals used in beer production, the transfer of mycotoxins throughout malting and brewing as well as an insight into the incidence of mycotoxins in the craft beer segment of the industry. Studies show that germination is the malting step that can lead to a significant increase in the level of all Fusarium mycotoxins. 
  • 476
  • 29 Jan 2022
Topic Review Peer Reviewed
Recent Advances in Research on Molecular Mechanisms of Fungal Signaling
Biochemical signaling is one of the key mechanisms to coordinate a living organism in all aspects of its life. It is still enigmatic how exactly cells and organisms deal with environmental signals and irritations precisely because of the limited number of signaling proteins and a multitude of transitions inside and outside the cell. Many components of signaling pathways are functionally pleiotropic, which means they have several functions. A single stimulus often results in multiple responses, a distinct response can be triggered by numerous stimuli and signals initiated by different stimuli are often transduced via commonly used network components. This review sheds light on the most important molecular mechanisms of cellular signaling in fungi and consequently provides a comprehensive overview about the current state of research on the road to understand the impact of signal transduction in eukaryotic microorganisms.
  • 627
  • 23 Sep 2022
Topic Review
Putative Anticancer Compounds from Plant-Derived Endophytic Fungi
Endophytic fungi are microorganisms that exist almost ubiquitously inside the various tissues of living plants where they act as an important reservoir of diverse bioactive compounds. Recently, endophytic fungi have drawn tremendous attention from researchers; their isolation, culture, purification, and characterization have revealed the presence of around 200 important and diverse compounds including anticancer agents, antibiotics, antifungals, antivirals, immunosuppressants, and antimycotics. Many of these anticancer compounds, such as paclitaxel, camptothecin, vinblastine, vincristine, podophyllotoxin, and their derivatives, are currently being used clinically for the treatment of various cancers (e.g., ovarian, breast, prostate, lung cancers, and leukemias). By increasing the yield of specific compounds with genetic engineering and other biotechnologies, endophytic fungi could be a promising, prolific source of anticancer drugs. In the future, compounds derived from endophytic fungi could increase treatment availability and cost effectiveness. 
  • 466
  • 17 Jan 2022
Topic Review
Production of Fungal Pigments
Due to the negative environmental and health effects of synthetic colorants, pigments of natural origins of plants and microbes constitute an abundant source for the food, cosmetic, textile, and pharmaceutical industries. The demands for natural alternatives, which involve natural colorants and natural biological processes for their production, have been growing rapidly. Fungi contain some of the most prolific pigment producers, and they excel in bioavailability, yield, cost-effectiveness, and ease of large-scale cell culture as well as downstream processing.
  • 518
  • 10 Jan 2023
Topic Review
Poultry Litter in Agricultural Areas
The poultry farming industry has assumed a pivotal role in meeting the global demand for affordable animal proteins. While poultry farming makes a substantial contribution to food security and nutrition, it also presents environmental and public health challenges. The use of poultry litter as fertilizer for agricultural soils raises concerns about the transfer of pathogens and drug-resistant microorganisms from poultry farms to crop production areas.
  • 100
  • 23 Jan 2024
Topic Review
Potential Association between Cryptococcal Meningitis and Gut Microbiome
Cryptococcus neoformans is a major cause of fungal meningitis in immunocompromised individuals. Similar to other melanized microorganisms associated with human diseases, the cell wall-associated melanin of C. neoformans is a major virulence factor enabling it to evade host immune responses. The levels and formation of these melanins may be influenced by the microbiota-gut-brain axis. Studies have also found that C. neoformans infection can lead to dysbiosis of the human gut microbiota.
  • 215
  • 24 Oct 2023
  • Page
  • of
  • 9