Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 374 2022-09-23 08:47:09 |
2 format correct Meta information modification 374 2022-09-23 09:49:46 |

Video Upload Options

We provide professional Video Production Services to translate complex research into visually appealing presentations. Would you like to try it?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Jacob, S.;  Bühring, S.;  Bersching, K. Recent Advances in Research on Molecular Mechanisms of Fungal Signaling. Encyclopedia. Available online: https://encyclopedia.pub/entry/27521 (accessed on 15 November 2024).
Jacob S,  Bühring S,  Bersching K. Recent Advances in Research on Molecular Mechanisms of Fungal Signaling. Encyclopedia. Available at: https://encyclopedia.pub/entry/27521. Accessed November 15, 2024.
Jacob, Stefan, Sri Bühring, Katharina Bersching. "Recent Advances in Research on Molecular Mechanisms of Fungal Signaling" Encyclopedia, https://encyclopedia.pub/entry/27521 (accessed November 15, 2024).
Jacob, S.,  Bühring, S., & Bersching, K. (2022, September 23). Recent Advances in Research on Molecular Mechanisms of Fungal Signaling. In Encyclopedia. https://encyclopedia.pub/entry/27521
Jacob, Stefan, et al. "Recent Advances in Research on Molecular Mechanisms of Fungal Signaling." Encyclopedia. Web. 23 September, 2022.
Peer Reviewed
Recent Advances in Research on Molecular Mechanisms of Fungal Signaling

Biochemical signaling is one of the key mechanisms to coordinate a living organism in all aspects of its life. It is still enigmatic how exactly cells and organisms deal with environmental signals and irritations precisely because of the limited number of signaling proteins and a multitude of transitions inside and outside the cell. Many components of signaling pathways are functionally pleiotropic, which means they have several functions. A single stimulus often results in multiple responses, a distinct response can be triggered by numerous stimuli and signals initiated by different stimuli are often transduced via commonly used network components. This review sheds light on the most important molecular mechanisms of cellular signaling in fungi and consequently provides a comprehensive overview about the current state of research on the road to understand the impact of signal transduction in eukaryotic microorganisms.

cAMP signaling quorum sensing alternative splicing lipid signaling MAPK cascade multistep phosphorelay pheromone signaling glucose signaling light signaling fungal signaling fungi
Adaptation and resilience to environmental changes is a prerequisite for cells and organisms to live, survive and evolve. The expansion of signaling pathways in three kingdoms—Archaea, Bacteria and Eukarya—came about through the horizontal transfer of bacterial genes and the coevolution of the components of the respective systems [1][2][3]. Consequently, in terms of their functional properties and molecular architecture, signaling systems in unicellular eukaryotes represent an intermediate stage in the evolution of signaling systems between pro- and higher eukaryotes [2]. All living cells have in common that the functional organization of fundamental processes of the cell—growth, metabolism, differentiation and apoptosis—includes four basic components: (i) a signal receptor, which specifically recognizes a signal molecule; (ii) a signal transport, which is associated to the receptor; (iii) a signal amplifier, which is an ion channel or an enzyme producing second messengers; and (iv) an effector (signal receiver), which initiates single or multiple intracellular signal cascades, resulting in the response to the external changes [1].
Here, we aim to map the great diversity of molecular signal transduction processes in fungi to show how signaling proteins encrypt information, coordinate different transmission routes and deploy response to various environmental stimuli. Therefore, we present an overview of the most important mechanisms of molecular cellular signal transduction by showing selected and prominent examples.

References

  1. Pertseva, M.N.; Shpakov, A.O. The Prokaryotic Origin and Evolution of Eukaryotic Chemosignaling Systems. Neurosci. Behav. Physiol. 2009, 39, 793–804.
  2. Aravind, L.; Anantharaman, V.; Iyer, L.M. Evolutionary connections between bacterial and eukaryotic signaling systems: A genomic perspective. Curr. Opin. Microbiol. 2003, 6, 490–497.
  3. Cashin, P.; Goldsack, L.; Hall, D.; O’Toole, R. Contrasting signal transduction mechanisms in bacterial and eukaryotic gene transcription. FEMS Microbiol. Lett. 2006, 261, 155–164.
More
Information
Subjects: Mycology
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , ,
View Times: 960
Online Date: 23 Sep 2022
1000/1000
ScholarVision Creations