Topic Review
Digital Twins Applications in Agriculture and Farming Domain
Digital Twins serve as virtual counterparts, replicating the characteristics and functionalities of tangible objects, processes, or systems within the digital space, leveraging their capability to simulate and forecast real-world behavior. They have found valuable applications in smart farming, facilitating a comprehensive virtual replica of a farm that encompasses vital aspects such as crop cultivation, soil composition, and prevailing weather conditions. By amalgamating data from diverse sources, including soil, plants condition, environmental sensor networks, meteorological predictions, and high-resolution UAV and Satellite imagery, farmers gain access to dynamic and up-to-date visualization of their agricultural domains empowering them to make well-informed and timely choices concerning critical aspects like efficient irrigation plans, optimal fertilization methods, and effective pest management strategies, enhancing overall farm productivity and sustainability.
  • 478
  • 31 Aug 2023
Topic Review
Crucial Mediators of Adipocyte Intercellular Communication
Cancer research has prioritized the study of the tumor microenvironment (TME) as a crucial area of investigation. Understanding the communication between tumor cells and the various cell types within the TME has become a focal point. Bidirectional communication processes between these cells support cellular transformation, as well as the survival, invasion, and metastatic dissemination of tumor cells. Extracellular vesicles are lipid bilayer structures secreted by cells that emerge as important mediators of this cell-to-cell communication. EVs transfer their molecular cargo, including proteins and nucleic acids, and particularly microRNAs, which play critical roles in intercellular communication. Adipocytes, a significant component of the breast stroma, exhibit high EV secretory activity, which can then modulate metabolic processes, promoting the growth, proliferation, and migration of tumor cells.
  • 239
  • 31 Aug 2023
Topic Review
Bioactive Compounds of Sappan Wood
Sappan wood (Caesalpinia sappan) is a tropical hardwood tree found in Southeast Asia. Sappan wood contains a water-soluble compound, which imparts a red color named brazilin. Sappan wood is utilized to produce dye for fabric and coloring agents for food and beverages, such as wine and meat. As a valuable medicinal plant, the tree is also known for its antioxidant, anti-inflammatory, and anticancer properties. It has been observed that sappan wood contains various bioactive compounds, including brazilin, brazilein, sappan chalcone, and protosappanin A. It has also been discovered that these substances have various health advantages; they lower inflammation, enhance blood circulation, and are anti-oxidative in nature. Sappan wood has been used as a medicine to address a range of illnesses, such as gastrointestinal problems, respiratory infections, and skin conditions. Studies have also suggested that sappan wood may have anticarcinogenic potential as it possesses cytotoxic activity against cancer cells. 
  • 690
  • 31 Aug 2023
Topic Review
Applications of Artificial Intelligence in Smart-Crop Breeding
Artificial intelligence (AI) has emerged as a revolutionary field, providing a great opportunity in shaping modern crop breeding, and is extensively used indoors for plant science. Advances in crop phenomics, enviromics, together with the other “omics” approaches are paving ways for elucidating the detailed complex biological mechanisms that motivate crop functions in response to environmental trepidations. These “omics” approaches have provided plant researchers with precise tools to evaluate the important agronomic traits for larger-sized germplasm at a reduced time interval in the early growth stages. The big data and the complex relationships within impede the understanding of the complex mechanisms behind genes driving the agronomic-trait formations. AI brings huge computational power and many new tools and strategies for future breeding. 
  • 1.8K
  • 31 Aug 2023
Topic Review
RNA Editing Detection Tools
RNA editing is the most frequent RNA modification in mammalian transcriptomes, and two types have been identified: (1) the most frequent, adenosine to inosine (A-to-I); and (2) the less frequent, cysteine to uracil (C-to-U) RNA editing. Unlike other epitranscriptomic marks, RNA editing can be readily detected from RNA sequencing (RNA-seq) data without any chemical conversions of RNA before sequencing library preparation. Furthermore, analyzing RNA editing patterns from transcriptomic data provides an additional layer of information about the epitranscriptome. As the significance of epitranscriptomics, particularly RNA editing, gains recognition in various fields of biology and medicine, there is a growing interest in detecting RNA editing sites (RES) by analyzing RNA-seq data. To cope with this increased interest, several bioinformatic tools are available.
  • 403
  • 31 Aug 2023
Topic Review
STIM1 in Regulation of Cardiac Energy Substrate Preference
The heart requires a variety of energy substrates to maintain proper contractile function. Glucose and long-chain fatty acids (FA) are the major cardiac metabolic substrates under physiological conditions. Upon stress, a shift of cardiac substrate preference toward either glucose or FA is associated with cardiac diseases. For example, in pressure-overloaded hypertrophic hearts, there is a long-lasting substrate shift toward glucose, while in hearts with diabetic cardiomyopathy, the fuel is switched toward FA. Stromal interaction molecule 1 (STIM1), a well-established calcium (Ca2+) sensor of endoplasmic reticulum (ER) Ca2+ store, is increasingly recognized as a critical player in mediating both cardiac hypertrophy and diabetic cardiomyopathy. However, the cause–effect relationship between STIM1 and glucose/FA metabolism and the possible mechanisms by which STIM1 is involved in these cardiac metabolic diseases are poorly understood.
  • 403
  • 31 Aug 2023
Topic Review
Applications of UV-C Light in the Food Industry
A variety of bioactive substances present in fruit- and vegetable-processed products have health-promoting properties. The consumption of nutrient-rich plant-based products is essential to address undernutrition and micronutrient deficiencies. Preservation is paramount in manufacturing plant-based nonsolid foods such as juices, purees, and sauces. To prevent the loss of nutrients associated with thermal treatment, alternative technologies are being researched extensively. In studies conducted on nonsolid food, UV-C treatment has been proven to preserve quality and minimize nutrient degradation.
  • 733
  • 31 Aug 2023
Topic Review
Cysteine Proteases Secreted by G. duodenalis
Giardia duodenalis (syn. G. lamblia, G. intestinalis) is an intestinal protozoan parasite that causes giardiasis in humans and livestock, companion and wild animals. Giardiasis is a leading cause of waterborne diarrheal infections worldwide, with an estimated number of 280 million human cases per annum.
  • 285
  • 31 Aug 2023
Topic Review
Ion Channels Involved in Oxidative Stress-Related Gastrointestinal Diseases
Ion channels (ICs) are integral membrane proteins that play a crucial role in regulating the ions’ flow across cell membranes. They are essential for maintaining cellular homeostasis and are involved in various physiological processes. The pathogenesis of various gastrointestinal (GI) disorders, including gastritis, ulcers, inflammatory bowel disease (IBD) and cancer, can be linked to oxidative stress. It is known that reactive species carry out a crucial role in the genesis and progression of these pathologies; however, the contribution of ionic channels in their development is still under discussion. The function of ion channels in the gastrointestinal tract influences a variety of cellular processes.
  • 425
  • 31 Aug 2023
Topic Review
PWS-Associated Genes, Their Imprinting, and Expression Pattern
Prader–Willi syndrome (PWS, OMIM #176270) and Schaaf–Yang syndrome (SYS, OMIM #615547) are rare autosomal-dominant, imprinted genetic disorders caused by the loss of one or more normally active paternal genes in the chromosomal region of 15q11-q13, called the PWS region.
  • 342
  • 31 Aug 2023
  • Page
  • of
  • 1815
ScholarVision Creations