Topic Review
TMDC Nanozymes: Application Perspective
Applications of TMDC NZs in different fields—starting from biosensing to different treatment fields like antibacterial, anti-inflammation activity and cancer therapy—are discussed in more details. 
  • 461
  • 29 Mar 2022
Topic Review
TMCO1 Gene
Transmembrane and coiled-coil domains 1: The TMCO1 gene provides instructions for making a protein that forms specialized structures called channels through which positively charged calcium atoms (calcium ions) flow.
  • 437
  • 25 Dec 2020
Topic Review
TLR9
Toll-like receptor 9 is a protein that in humans is encoded by the TLR9 gene. TLR9 has also been designated as CD289 (cluster of differentiation 289). It is a member of the toll-like receptor (TLR) family. TLR9 is an important receptor expressed in immune system cells including dendritic cells, macrophages, natural killer cells, and other antigen presenting cells. TLR9 preferentially binds DNA present in bacteria and viruses, and triggers signaling cascades that lead to a pro-inflammatory cytokine response. Cancer, infection, and tissue damage can all modulate TLR9 expression and activation. TLR9 is also an important factor in autoimmune diseases, and there is active research into synthetic TLR9 agonists and antagonists that help regulate autoimmune inflammation.
  • 360
  • 11 Oct 2022
Topic Review
TLR8 in Viral Infections
Viruses are recognized by several Toll-like receptors (TLRs), including TLR8, which is known to bind ssRNA structures. However, the similarities between TLR8 and TLR7 have obscured the distinctive characteristics of TLR8 activation and its importance in the immune system. 
  • 381
  • 07 Feb 2022
Topic Review
TLR7 Implication in Various Clinical Diseases
Toll-like receptor 7 (TLR7) is a class of pattern recognition receptors (PRRs) recognizing the pathogen-associated elements and damage and as such is a major player in the innate immune system. TLR7 triggers the release of pro-inflammatory cytokines or type-I interferons (IFN), which is essential for immunoregulation. Increasing reports also highlight that the abnormal activation of endosomal TLR7 is implicated in various immune-related diseases, carcinogenesis as well as the proliferation of human immunodeficiency virus (HIV). 
  • 569
  • 30 Jan 2023
Topic Review
TLR4-Pathway-Associated Biomarkers in Subarachnoid Hemorrhage
Subarachnoid hemorrhage (SAH) is a complex condition with high morbidity and mortality. Numerous different factors contributing to brain injury after SAH have been identified. Despite treatment of complications of early brain injury, such as rise of intracranial pressure, disturbance of the blood–brain barrier, cerebral edema, and decrease in cerebral perfusion, the outcome of many patients remains devastating. Neuroinflammation within the brain parenchyma with associated neuronal cell death has been described as a leading mechanism for additional secondary brain injury. It involves complex signaling cascades in which the upregulation of inflammatory genes is induced. Consequently, the release of different inflammatory cytokines and chemokines leads to self-reinforcement of the immune system with concomitant neuronal cell death, destroying the brain. The immune system within the central nervous system (CNS) fulfills a special role. It is privileged and differs in its standards from the peripheral immune response. 
  • 632
  • 10 Nov 2022
Topic Review
TLR4
Toll-like receptor 4 is a protein that in humans is encoded by the TLR4 gene. TLR4 is a transmembrane protein, member of the toll-like receptor family, which belongs to the pattern recognition receptor (PRR) family. Its activation leads to an intracellular signaling pathway NF-κB and inflammatory cytokine production which is responsible for activating the innate immune system. TRL4 expressing cells are myeloid (erythrocytes, granulocytes, macrophages) rather than lymphoid (T-cells, B-cells, NK cells). Most myeloid cells also express high levels of CD14, which facilitates activation of TLR4 by LPS. It is most well known for recognizing lipopolysaccharide (LPS), a component present in many Gram-negative bacteria (e.g. Neisseria spp.) and selected Gram-positive bacteria. Its ligands also include several viral proteins, polysaccharide, and a variety of endogenous proteins such as low-density lipoprotein, beta-defensins, and heat shock protein. Palmitic acid is also a TLR4 agonist. TLR4 has also been designated as CD284 (cluster of differentiation 284). The molecular weight of TLR4 is approximately 95 kDa.
  • 1.2K
  • 29 Nov 2022
Topic Review
TLR2
Toll-like receptor 2 also known as TLR2 is a protein that in humans is encoded by the TLR2 gene. TLR2 has also been designated as CD282 (cluster of differentiation 282). TLR2 is one of the toll-like receptors and plays a role in the immune system. TLR2 is a membrane protein, a receptor, which is expressed on the surface of certain cells and recognizes foreign substances and passes on appropriate signals to the cells of the immune system.
  • 538
  • 14 Nov 2022
Topic Review
TKS4 and TKS5 Scaffold Proteins
Scaffold proteins are typically thought of as multi-domain “bridging molecules.” They serve as crucial regulators of key signaling events by simultaneously binding multiple participants involved in specific signaling pathways. In the case of epidermal growth factor (EGF)-epidermal growth factor receptor (EGFR) binding, the activated EGFR contacts cytosolic SRC tyrosine-kinase, which then becomes activated. This process leads to the phosphorylation of SRC-substrates, including the tyrosine kinase substrates (TKS) scaffold proteins. The TKS proteins serve as a platform for the recruitment of key players in EGFR signal transduction, promoting cell spreading and migration. The TKS4 and the TKS5 scaffold proteins are tyrosine kinase substrates with four or five SH3 domains, respectively. Their structural features allow them to recruit and bind a variety of signaling proteins and to anchor them to the cytoplasmic surface of the cell membrane. TKS4 and TKS5 had been recognized for their involvement in cellular motility, reactive oxygen species-dependent processes, and embryonic development. Furthermore, TKS4 has also been implicated in the regulation of homeostasis of mature adipose and bone tissue.
  • 752
  • 19 Jan 2021
Topic Review
TK2-MDS
TK2-related mitochondrial DNA depletion syndrome, myopathic form (TK2-MDS) is an inherited condition that causes progressive muscle weakness (myopathy).
  • 448
  • 23 Dec 2020
  • Page
  • of
  • 1815
ScholarVision Creations