Topic Review
NMR-Based Metabolomics in Metal-Based Drug Research
Thanks to recent advances in analytical technologies and statistical capabilities, the application field of metabolomics has increased significantly. Currently, this approach is used to investigate biological substrates looking for metabolic profile alterations, diseases markers, and drug effects. Due to the low work-up required, high data reproducibility, and high throughput, NMR spectroscopy is an optimal detection technique in metabolomics studies.  The use of NMR-based metabolomic approaches in the investigation of a metal drug action mechanism or for assessing tumour response to anticancer metal agents is a recent, fast-growing tool. Only in recent years has the NMR-based metabolomic approach been extended to investigate the cell metabolic alterations induced by metal-based antitumor drug administration. The future perspectives are even more interesting.  The use of a metabolomics approach was very effective in assessing tumor response to drugs and providing insights into the mechanism of action and resistance. Therefore, metabolomics may open new perspectives into the development of metal-based drugs. In particular, it has been shown that NMR-based in vitro metabolomics is a powerful tool for detecting variations of the cell metabolites induced by the metal drug exposure, thus offering also the possibility of identifying specific markers for in vivo monitoring of tumor responsiveness to anticancer treatments. Moreover, NMR-based metabolomics could also play an important role in clinical trials, preventing or reducing unwanted side effects of metal anticancer drugs by the early detection of metabolic dysfunctions in bio-fluids. 
  • 1.1K
  • 15 Feb 2021
Biography
Clemens Winkler
Clemens Alexander Winkler (December 26, 1838 – October 8, 1904) was a German chemist who discovered the element germanium in 1886, solidifying Dmitri Mendeleev's theory of periodicity. Winkler was born in 1838 in Freiberg, Kingdom of Saxony the son of a chemist who had studied under Berzelius. Winkler's early education was at schools in Freiberg, Dresden, and Chemnitz. In 1857 he entered th
  • 1.1K
  • 17 Nov 2022
Topic Review
Aldose Reductase
Aldose reductase (AR) is a member of the reduced nicotinamide adenosine dinucleotide phosphate (NADPH)-dependent aldo-keto reductase superfamily. It is also the rate-limiting enzyme of the polyol pathway, catalyzing the conversion of glucose to sorbitol, which is subsequently converted to fructose by sorbitol dehydrogenase. AR is highly expressed by Schwann cells in the peripheral nervous system (PNS). The excess glucose flux through AR of the polyol pathway under hyperglycemic conditions has been suggested to play a critical role in the development and progression of diabetic peripheral neuropathy (DPN).
  • 1.1K
  • 09 Feb 2021
Topic Review
Unrecognizable Memory Phenotype CD8+ T-cells
Virtual memory T (TVM) cells are a recently described population of conventional CD8+ T cells that, in spite of their antigen inexperience, express markers of T cell activation. TVM cells exhibit rapid responsiveness to both antigen-specific and innate stimuli in youth but acquire intrinsic antigen-specific response defects in the elderly.
  • 1.1K
  • 09 Dec 2020
Topic Review
Seed Banking Effectiveness
Understanding seed viability under long-term storage conditions provides basic and useful information to investigate the effectiveness of seed banking. Besides the germination success, seedling establishment is also an important requirement, and a decisive step to ensure plant propagation. We used comparative data of germination, seedling growth, and survival percentage between fresh and 10-years-stored seeds of Senecio morisii, a narrow endemic and vulnerable species of Sardinia (Italy), in order to evaluate if differences exist in these traits. Stored seeds showed higher germination percentages than fresh ones, whereas seedling growth and survival did not present significant differences between them, except for seedling growth in plants produced from seeds germinated at 25 °C. This study allowed us to assess if seeds of S. morisii were able to germinate under controlled conditions, and if they maintained their viability and germination capacity for at least 10 years of long-term storage in the seed bank. In addition, the high seedling survival detected in both fresh and stored seeds suggests that stored seeds of S. morisii can be used to support reinforcement or reintroduction actions when fresh materials are not available.
  • 1.1K
  • 30 Oct 2020
Topic Review
Vitro Plant Regeneration
Plants generally have the highest regenerative ability because they show a high degree of developmental plasticity. Although the basic principles of plant regeneration date back many years, understanding the cellular, molecular, and physiological mechanisms based on these principles is currently in progress. In addition to the significant effects of some factors such as medium components, phytohormones, explant type, and light on the regeneration ability of an explant, recent reports evidence the involvement of molecular signals in organogenesis and embryogenesis responses to explant wounding, induced plant cell death, and phytohormones interaction. However, some cellular behaviors such as the occurrence of somaclonal variations and abnormalities during the in vitro plant regeneration process may be associated with adverse effects on the efficacy of plant regeneration. A review of past studies suggests that, in some cases, regeneration in plants involves the reprogramming of distinct somatic cells, while in others, it is induced by the activation of relatively undifferentiated cells in somatic tissues. However, this review covers the most important factors involved in the process of plant regeneration and discusses the mechanisms by which plants monitor this process.
  • 1.1K
  • 02 Nov 2020
Topic Review
Conformationally Constrained Peptides
Constrained Peptides are peptides whose conformation is restricted to the one that the ligand assumes upon target binding (or to a subset of structures occupied by a flexible parent peptide). This is typically achieved by macrocyclization of the peptide chain. Structure regidification is highly advantageous with regard to attaining increased affinity and can also affect proteolytic stability.
  • 1.1K
  • 25 Feb 2021
Topic Review
Pathogenesis of COVID-19
The systemic manifestations commonly observed in COVID-19 patients include hypertension, arterial and venous thromboembolism, kidney disease, cerebrovascular disorders, and diabetes mellitus). These clinical findings strongly suggest that the virus is targeting the endothelium. Here we report a systematic and comprehensive evaluation of the evidence showing that the endothelium is a key target organ in COVID-19, playing a fundamental role in its pathogenesis.
  • 1.1K
  • 30 Oct 2020
Topic Review
Neutrophil Extracellular Traps
"Neutrophil extracellular traps" (NETs) are released by neutrophils. Neutrophils act as the first line of defense during infection and inflammation. Once activated, they are able to fulfil numerous tasks to fight inflammatory insults while keeping a balanced immune response. Besides well-known functions, such as phagocytosis and degranulation, neutrophils are also able to release “neutrophil extracellular traps” (NETs).. In response to most stimuli, the neutrophils release decondensed chromatin in a NADPH oxidase-dependent manner decorated with histones and granule proteins, such as neutrophil elastase, myeloperoxidase, and cathelicidins. Although primarily supposed to prevent microbial dissemination and fight infections, there is increasing evidence that an overwhelming NET response correlates with poor outcome in many diseases. Lung-related diseases especially, such as bacterial pneumonia, cystic fibrosis, chronic obstructive pulmonary disease, aspergillosis, influenza, and COVID-19, are often affected by massive NET formation. Highly vascularized areas as in the lung are susceptible to immunothrombotic events promoted by chromatin fibers. Keeping this fragile equilibrium seems to be the key for an appropriate immune response. Therapies targeting dysregulated NET formation might positively influence many disease progressions.
  • 1.1K
  • 13 Aug 2021
Topic Review
Multiple Sclerosis
Multiple sclerosis (MS) is a chronic autoimmune disease affecting the central nervous system (CNS), caused by genetic and environmental factors. It is characterized by intermittent and recurrent episodes of inflammation that result in the demyelination and subsequent damage of the underlying axons present in the brain, optic nerve and spinal cord [1][2][3].
  • 1.1K
  • 22 Apr 2021
  • Page
  • of
  • 1815
ScholarVision Creations