Topic Review
Current Landscape of Disease
Infectious diseases limit productivity and result in significant economic losses in each sector. Transboundary animal diseases (TADs) are economically important, have global reach, and require management. TADs can have significant implications for food security. Food-borne pathogens comprise microorganisms such as bacteria, viruses, and fungi, as well as parasites that cause food spoilage and infection. Food-borne pathogens are a major threat to food safety, as they can cause human diseases if animal products infected with toxins are consumed. The emergence of diseases stems from intricate interactions between microbes and humans, often influenced by a variety of complex factors. Key contributors to disease emergence include microbial adaptation and change, ecological shifts, human demographics and behavior, advancements in technology and healthcare, travel, trade, and industrial activities, breakdowns in public health measures, and varying levels of susceptibility to infection.
  • 132
  • 27 Dec 2023
Topic Review
Plant Growth-Promoting Microorganisms against Biotic and Abiotic Stresses
Plant growth-promoting microorganisms (PGPM) are a diverse group of microorganisms that can enhance plant growth and nutrition, improve plant tolerance to abiotic stresses such as drought, salinity, and heavy metal pollution, and reduce the growth of certain pathogens.
  • 191
  • 27 Dec 2023
Topic Review
T5SS and Other Secretion Systems in Bacteria
Bacteria have existed on Earth for billions of years, exhibiting ubiquity and involvement in various biological activities. To ensure survival, bacteria usually release and secrete effector proteins to acquire nutrients and compete with other microorganisms for living space during long-term evolution. Consequently, bacteria have developed a range of secretion systems, which are complex macromolecular transport machines responsible for transporting proteins across the bacterial cell membranes. Among them, one particular secretion system that stands out from the rest is the type V secretion system (T5SS), known as the “autotransporter”.
  • 233
  • 27 Dec 2023
Topic Review
CD133 as a Prognostic Biomarker in Oncology
The CD133 cell membrane glycoprotein, also termed prominin-1, is expressed on some of the tumor cells of both solid and blood malignancies. The CD133-positive tumor cells were shown to exhibit higher proliferative activity, greater chemo- and radioresistance, and enhanced tumorigenicity compared to their CD133-negative counterparts. The CD133-positive cells are related to the cancer stem cell subpopulation in many types of cancer. For this reason, CD133 is regarded as a potential prognostic biomarker in oncology. 
  • 165
  • 27 Dec 2023
Topic Review
Connexins in Fibrosis, EMTs, and Wound Healing
Fibrosis initially appears as a normal response to damage, where activated fibroblasts produce large amounts of the extracellular matrix (ECM) during the wound healing process to assist in the repair of injured tissue. However, the excessive accumulation of the ECM, unresolved by remodeling mechanisms, leads to organ dysfunction. Connexins, a family of transmembrane channel proteins, are widely recognized for their major roles in fibrosis, the epithelial–mesenchymal transition (EMT), and wound healing. Efforts have been made in recent years to identify novel mediators and targets for this regulation. Connexins form gap junctions and hemichannels, mediating communications between neighboring cells and inside and outside of cells, respectively. Recent evidence suggests that connexins, beyond forming channels, possess channel-independent functions in fibrosis, the EMT, and wound healing. One crucial channel-independent function is their role as the primary functional component for cell adhesion. Other channel-independent functions of connexins involve their roles in mitochondria and exosomes.
  • 137
  • 26 Dec 2023
Topic Review
Biological Alzheimer’s Disease Diagnosis Based on Amyloid Status
Alzheimer’s disease (AD) was first characterized by Dr. Alois Alzheimer in 1906 by studying a demented patient and discovering cerebral amyloid plaques and neurofibrillary tangles. Subsequent research highlighted the roles of Aβ peptides and tau proteins, which are the primary constituents of these lesions, which led to the amyloid cascade hypothesis. Technological advances, such as PET scans using Florbetapir, have made it possible to visualize amyloid plaques in living patients, thus improving AD’s risk assessment. The National Institute on Aging and the Alzheimer’s Association introduced biological diagnostic criteria in 2011, which underlined the amyloid deposits diagnostic value. However, potential confirmation bias may have led researchers to over-rely on amyloid markers independent of AD’s symptoms, despite evidence of their limited specificity. 
  • 137
  • 26 Dec 2023
Topic Review Peer Reviewed
Biophysics and Quantum Limitation of Photoreceptive Processes
This entry paper is an attempt to explain how the discrete nature of light (energy discreteness in the form of photons) constrains the light detection process all along the evolutionary path, in the not-fully-understood photoreceptive systems of unicellular microorganisms (nonimaging systems) and in the complex and well-known visual system of higher organisms (imaging systems). All these systems are perfect examples of the interplay between physics and biology, i.e., they are the perfect topic of research for biophysicists. The paper describes how photoreceptive and visual systems achieve the goal of photon counting, which information is conveyed by a finite number of photons, and which noise factors limit light-detecting processes.
  • 448
  • 26 Dec 2023
Topic Review
Plant Immune Response
In a world with constant population growth, and in the context of climate change, the need to supply the demand of safe crops has stimulated an interest in ecological products that can increase agricultural productivity. This implies the use of beneficial organisms and natural products to improve crop performance and control pests and diseases, replacing chemical compounds that can affect the environment and human health. Microbial biological control agents (MBCAs) interact with pathogens directly or by inducing a physiological state of resistance in the plant. This involves several mechanisms, like interference with phytohormone pathways and priming defensive compounds. In Argentina, one of the world’s main maize exporters, yield is restricted by several limitations, including foliar diseases such as common rust and northern corn leaf blight (NCLB). 
  • 198
  • 26 Dec 2023
Topic Review
Ovarian Cancer Immunogenicity
Epithelial ovarian cancer (EOC) is the most lethal gynecologic cancer. The disease is often diagnosed after wide-spread dissemination, and the standard treatment combines aggressive surgery with platinum-based chemotherapy; however, most patients experience relapse in the form of peritoneal carcinomatosis, resulting in a 5-year mortality below 45%. There is clearly a need for the development of novel treatments and cancer immunotherapies offering a different approach. Immunotherapies have demonstrated their efficacy in many types of cancers; however, only <15% of EOC patients show any evidence of response. One of the main barriers behind the poor therapeutic outcome is the reduced expression of Major Histocompatibility Complexes class I (MHC I) which occurs in approximately 60% of EOC cases. 
  • 174
  • 26 Dec 2023
Topic Review
CRISPR/Cas-Based Cell Therapy for Type 1 Diabetes
Type 1 diabetes mellitus (T1D) is an autoimmune disease caused by the destruction of insulin-producing β-cells in the pancreas by cytotoxic T-cells. To date, there are no drugs that can prevent the development of T1D. Insulin replacement therapy is the standard care for patients with T1D. This treatment is life-saving, but is expensive, can lead to acute and long-term complications, and results in reduced overall life expectancy. This has stimulated the research and development of alternative treatments for T1D. In this research, potential therapies for T1D are considered using cellular regenerative medicine approaches with a focus on CRISPR/Cas-engineered cellular products. However, CRISPR/Cas as a genome editing tool has several drawbacks that should be considered for safe and efficient cell engineering. In addition, cellular engineering approaches themselves pose a hidden threat. The purpose of this research is to critically discuss novel strategies for the treatment of T1D using genome editing technology. 
  • 209
  • 26 Dec 2023
  • Page
  • of
  • 1746
Video Production Service