Topic Review
Amyloid Precursor Protein in AD
       Alzheimer’s disease (AD) is the most common neurodegenerative disease, and globally, over 46 million people are affected by this devastating disease. AD causes irreversible mental and cognitive deficiency including memory loss, personality disorder, and intellectual abnormality in patients older than 65 years. Central sensory systems including the visual system are also affected during the advanced stages of the disease . Collectively, complications of AD diminish the lifespan, hamper the quality of life, and cause physical impairment, which finally appears as a terrible difficulty in normal life activities. To decrease the social and economic costs and the burden of the disease on patients and their families, recently, several attempts have been made to identify disease diagnostic markers. Neuroimaging methods, such as magnetic resonance imaging and positron emission tomography, have been developed enabling researchers to diagnose AD at the early stages of the disease. Moreover, distinct biomarkers, which are essential to figure out the pathological characteristics of AD, have been observed in the cerebrospinal fluid (CSF). The advancement of AD is associated with three cardinal neuropathological features such as extracellular deposition of amyloid-β (Aβ) to produce neuritic plaques, intracellular neurofibrillary tangles (NFTs) and synaptic degeneration. These pathological alterations arise in the neocortex, hippocampus, and other subcortical regions that are crucial for cognitive functions. Aβ has been considered as the foremost risk factor that playing a vital role in the initiation and progression of AD. Aβ is generated into the typical individual, but in some instances, this peptide leads to aggregation, the starting point of disease progression. Many findings elucidate that Aβ oligomers might play a central role in neuronal dysfunction and AD. 
  • 621
  • 20 Apr 2021
Topic Review
Amyloid-like Aggregation as Common Cause of Diseases
Amyloids were conventionally referred to as extracellular and intracellular accumulation of Aβ42 peptide, which causes the formation of plaques and neurofibrillary tangles inside the brain leading to the pathogenesis in Alzheimer’s disease. Subsequently, amyloid-like deposition was found in the etiology of prion diseases, Parkinson’s disease, type II diabetes, and cancer, which was attributed to the aggregation of prion protein, α-Synuclein, islet amyloid polypeptide protein, and p53 protein, respectively. Hence, traditionally amyloids were considered aggregates formed exclusively by proteins or peptides. However, since the last decade, it has been discovered that other metabolites, like single amino acids, nucleobases, lipids, glucose derivatives, etc., have a propensity to form amyloid-like toxic assemblies. Several studies suggest direct implications of these metabolite assemblies in the patho-physiology of various inborn errors of metabolisms like phenylketonuria, tyrosinemia, cystinuria, and Gaucher’s disease, to name a few. 
  • 383
  • 13 Jul 2023
Topic Review
Amyloid-β Proteins and Pericytes
This review provides an updated overview of the interaction between Aβ proteins with pericytes, one the most significant and often forgotten cellular components of the BBB and the inner blood retinal barrier (IBRB).
  • 666
  • 24 May 2020
Topic Review
Amyloidogenic Proteins and Peptides
For a long time, studies of amyloidogenic proteins and peptides (amyloidogenic PPs) have been focused basically on their harmful properties and association with diseases. A vast amount of research has investigated the structure of pathogenic amyloids forming fibrous deposits within or around cells and the mechanisms of their detrimental actions. Much less has been known about the physiologic functions and beneficial properties of amyloidogenic PPs.
  • 297
  • 02 May 2023
Topic Review
Amyloidogenic Regions in bPaS1
Bacterial S1 protein is a functionally important ribosomal protein. It is a part of the 30S ribosomal subunit and is also able to interact with mRNA and tmRNA. An important feature of the S1 protein family is a strong tendency towards aggregation. 
  • 599
  • 20 Jul 2021
Topic Review
Amyloidosis
Amyloidosis is a term referring to a group of various protein-misfolding diseases wherein normally soluble proteins form aggregates as insoluble amyloid fibrils. How, or whether, amyloid fibrils contribute to tissue damage in amyloidosis has been the topic of debate. In vitro studies have demonstrated the appearance of small globular oligomeric species during the incubation of amyloid beta peptide (Aβ).
  • 631
  • 30 Aug 2021
Topic Review
Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS) is a progressive disease that affects motor neurons, which are specialized nerve cells that control muscle movement. These nerve cells are found in the spinal cord and the brain. In ALS, motor neurons die (atrophy) over time, leading to muscle weakness, a loss of muscle mass, and an inability to control movement.
  • 561
  • 31 Dec 2020
Topic Review
Amyotrophic Lateral Sclerosis and Serum Lipid Level Association
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with unknown etiology. Many metabolic alterations occur during ALS progress and can be used as a method of pre-diagnostic and early diagnosis. Dyslipidemia is one of the physiological changes observed in numerous ALS patients.
  • 272
  • 24 May 2023
Topic Review
Amyotrophic Lateral Sclerosis as a Non-Cell-Autonomous Disease: Multiple Roles of Transforming Growth Factor Beta
Transforming growth factor beta (TGFB) is a pleiotropic cytokine known to be dysregulated in many neurodegenerative disorders, including in amyotrophic lateral sclerosis (ALS). TGFB and its signaling pathway play multiple physiological roles in the various cell types, which are affected in ALS pathogenesis. Data from literature and from our group also demonstrated a crucial role of TGFB in the etiology and progression of ALS, leading us to hypothesize that an imbalance of TGFB signaling, diminished at the pre-symptomatic stage and then increased with time, could be linked to ALS progression. A reduced stimulation of the TGFB pathway at the beginning of the disease blocks its neuroprotective effects and promotes glutamate excitotoxicity. At later disease stages, the persistent activation of the TGFB pathway promotes an excessive microglial activation and strengthens muscular dysfunctions. The article has been published on 10.3390/ijms21124291 
  • 693
  • 19 Jun 2020
Topic Review
Amyotrophic Lateral Sclerosis with the Enteric Nervous System
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting motor neurons in the spinal cord, cerebral cortex, and medulla oblongata. Most patients present a clinical phenotype of classic ALS—with predominant atrophy, muscle weakness, and fasciculations—and survival of 3 to 5 years following diagnosis. There are two types of ALS: the familial form with genetic involvement, and the sporadic form with a multifactorial origin. ALS pathophysiology is characterized by involvement of multiple processes, including oxidative stress, glutamate excitotoxicity, and neuroinflammation. Moreover, it is proposed that conditioning risk factors affect ALS development—such as susceptibility to neurodegeneration in motor neurons, the intensity of performed physical activity, and intestinal dysbiosis with involvement of the enteric nervous system—which supports the existing theories of disease generation.
  • 338
  • 14 Apr 2023
  • Page
  • of
  • 1746
Video Production Service