Topic Review
Yeast-Based Biosensors
Composed of a sensor part made up of live yeast cells coupled to a transducer/reporter technological element, yeast-based biosensors are  powerful tools to detect and monitor environmental contaminants, toxins and generally organic or chemical markers of potential threat to human health. Yeasts are eukaryotic microorganisms very resistant to adverse environmental conditions but also able to sense and respond to a wide variety of stimuli. As eukaryotes, they constitute excellent cellular models to detect organic contaminants and chemicals  harmful to animals. For these reasons, combined with their ease of culture and genetic modification, yeasts have often been chosen as biological elements of biosensors since the 1970s. Numerous different types of yeast-based biosensors have been developed for the environmental and medical domains, some of which are able to detect pathogens and viruses. The present technological developments of Synthesis Biology and Nanotechnologies further drive yeasts based biosensors into a new era where the biological element is optimized in a tailor-made fashion by in silico design and where the output signals can be recorded or followed on a smartphone.
  • 1.0K
  • 02 Nov 2020
Topic Review
Yeast β-Glucans as Fish Immunomodulators
Administration of immunostimulants in fish is a preventive method to combat infections. A wide variety of these biological molecules exist, among which one of the yeast wall compounds stands out for its different biological activities. The β-glucan that forms the structural part of yeast is capable of generating immune activity in fish by cell receptor recognition. The most frequently used β-glucans for the study of mechanisms of action are those of commercial origin, with doses recommended by the manufacturer. Nevertheless, their immune activity is inefficient in some fish species, and increasing the dose may show adverse effects, including immunosuppression. Conversely, experimental β-glucans from other yeast species show different activities, such as antibacterial, antioxidant, healing, and stress tolerance properties.
  • 652
  • 23 Sep 2022
Topic Review
Yeast Hybrids in Brewing
Microbiology has long been a keystone in fermentation, and innovative yeast molecular biotechnology continues to represent a fruitful frontier in brewing science. Consequently, modern understanding of brewer’s yeast has undergone significant refinement over the last few decades.
  • 999
  • 22 Feb 2022
Topic Review
Yeast Heterologous Expression Systems Study Plant Membrane Proteins
Researchers are often interested in proteins that are present in cells in small ratios compared to the total amount of proteins. These proteins include transcription factors, hormones and specific membrane proteins. However, sufficient amounts of well-purified protein preparations are required for functional and structural studies of these proteins, including the creation of artificial proteoliposomes and the growth of protein 2D and 3D crystals. This aim can be achieved by the expression of the target protein in a heterologous system. The most popular for heterologous protein expression are the two species, baker’s yeast S. cerevisiae and methylotrophic yeast P. pastoris, expression in which is a well-established and widely used technique. 
  • 201
  • 26 Jul 2023
Topic Review
Yeast Communities Associated with Insects
Yeast communities associated with insects were identified either from entire insect bodies, which were previously surface-sterilized or not, or from dissected organs using culture-dependent and independent approaches. Independent cultural approaches usually involved DNA extractions from insect tissues followed by the amplification of taxonomic markers allowing a discrimination at the genus or species level, such as the Internal Transcribed Spacer (ITS) regions and the D1/D2 region of 26S ribosomal DNA.
  • 669
  • 02 Sep 2021
Topic Review
Yeast Cells in Microencapsulation
Yeasts are uni/multicellular eukaryotic organisms, originally thought to be ascomycetous fungi, but later recognized to also comprise basidiomycetous organisms; more typically, yeasts reproduce asexually (rapid duplication) but can also adopt sexual reproduction.
  • 965
  • 02 Jul 2021
Topic Review
Yeast Cell Polarity
A bottom-up route towards predicting evolution relies on a deep understanding of the complex network that proteins form inside cells. In a rapidly expanding panorama of experimental possibilities, the most difficult question is how to conceptually approach the disentangling of such complex networks. These can exhibit varying degrees of hierarchy and modularity, which obfuscate protein functions that may prove pivotal for adaptation. Using the well-established polarity network in budding yeast as a case study, we organize current literature to highlight protein entrenchments inside polarity in five sub modules: timing, mating, bud-scar, reaction-diffusion and the actin pathway. 
  • 604
  • 07 Dec 2020
Topic Review
Yeast as a Model for VPS13-Dependent Neurodegenerative Diseases
Mutations in human VPS13A-D genes result in rare neurological diseases, including chorea-acanthocytosis (ChAc). The pathogenesis of these diseases is poorly understood, and no effective treatment is available. As VPS13 genes are evolutionarily conserved, the effects of the pathogenic mutations could be studied in model organisms, including yeast, where one VPS13 gene is present. Here, the researchers summarize advancements obtained using yeast. In recent studies, vps13Δ and vps13-I2749 yeast mutants, which are models of chorea-acanthocytosis, were used to screen for multicopy and chemical suppressors. Two of the suppressors, a fragment of the MYO3 and RCN2 genes, act by downregulating calcineurin activity. In addition, vps13Δ suppression was achieved by using calcineurin inhibitors. The other group of multicopy suppressors were genes: FET4, encoding iron transporter, and CTR1, CTR3 and CCC2, encoding copper transporters. Mechanisms of their suppression rely on causing an increase in the intracellular iron content. Moreover, among the identified chemical suppressors were copper ionophores, which require a functional iron uptake system for activity, and flavonoids, which bind iron. These findings point at areas for further investigation in a higher eukaryotic model of VPS13-related diseases and to new therapeutic targets: calcium signalling and copper and iron homeostasis. Furthermore, the identified drugs are interesting candidates for drug repurposing for these diseases.
  • 387
  • 18 May 2022
Topic Review
Yeast β-Glucan with Immune-Modulatory Properties
β-glucans are a large class of complex polysaccharides with bioactive properties, including immune modulation. Natural sources of these compounds include yeast, oats, barley, mushrooms, and algae. Yeast is abundant in various processes, including fermentation, and they are often discarded as waste products. The production of biomolecules from waste resources is a growing trend worldwide with novel waste resources being constantly identified. Yeast-derived β-glucans may assist the host’s defence against infections by influencing neutrophil and macrophage inflammatory and antibacterial activities. β-glucans were long regarded as an essential anti-cancer therapy and were licensed in Japan as immune-adjuvant therapy for cancer in 1980 and new mechanisms of action of these molecules are constantly emerging.
  • 508
  • 01 Jun 2022
Topic Review
YdfD
ydfD is a lytic gene from the Qin cryptic prophage that encodes a 63-amino-acid protein, the ectopic expression of which in Escherichia coli can cause nearly complete cell lysis rapidly. The bacterial 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway is responsible for synthesizing the isoprenoids uniquely required for sustaining bacterial growth.
  • 760
  • 21 Mar 2022
  • Page
  • of
  • 1746
Video Production Service