You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Methods to Establish a 3D Cell Culture
The clear potential of three-dimensional (3D) systems to provide new models suitable for studying cell interactions in both basic and more specialized research, revolutionizing cell culture technology, and offering alternative methods for animal experimentation, has prompted the scientific community to develop different efficient methods to establish 3D cell cultures, all of which, in turn, affect 3D model characteristics. These techniques can be divided into two major categories: scaffold-free systems and scaffold-based systems. Scaffold-free systems are based on the self-aggregation capability of some cell types, which can be encouraged using specific cell plates and/or physical parameters that avoid cell attachment. On the other hand, in scaffold-based systems, cells are seeded in natural or synthetic materials, allowing cell proliferation, aggregation, and 3D organization.
  • 2.0K
  • 02 Aug 2023
Topic Review
Mitochondria and Ageing
Declining mitochondrial function, reflected in defects in ATP synthesis and increased generation of toxic reactive oxygen species is a universal feature of natural ageing. It accompanies the other hallmarks of ageing which include progressive loss of function in multiple organs, sarcopenia and increasing maladaptive low-grade inflammation. These end in death, which is a cumulative result of loss of function, leading to either increased vulnerability to environmental hazards such as predation and disease or to failure of critical organ systems such as the heart, liver or kidney. Several processes that may contribute mechanistically to age related degeneration have been identified, including oxidative damage, accumulation of toxic protein aggregates, autoinflammatory processes, loss of stem cell populations and an increasing load of malfunctional senescent cells.  Mitochondrial dysfunction has connections with each of these processes.  The following is a brief overview of some of these connections.
  • 2.0K
  • 02 Nov 2020
Topic Review
Aquaporins and Female Reproductive System
Aquaporins constitute a group of water channel proteins located in numerous cell types. These are pore-forming transmembrane proteins, which mediate the specific passage of water molecules through membranes. It is well-known that water homeostasis plays a crucial role in different reproductive processes, e.g., oocyte transport, hormonal secretion, completion of successful fertilization, blastocyst formation, pregnancy, and birth. Further, aquaporins are involved in the process of spermatogenesis, and they have been reported to be involved during the storage of spermatozoa. It is noteworthy that aquaporins are relevant for the physiological function of specific parts in the female reproductive system.
  • 2.0K
  • 22 Dec 2020
Topic Review
Sulfate Reduction in Intestinal Bacteria
Sulfate is present in foods, beverages, and drinking water. Its reduction and concentration in the gut depend on the intestinal microbiome activity, especially sulfate-reducing bacteria (SRB), which can be involved in inflammatory bowel disease (IBD). Assimilatory sulfate reduction (ASR) is present in all living organisms. In this process, sulfate is reduced to hydrogen sulfide and then included in cysteine and methionine biosynthesis. In contrast to assimilatory sulfate reduction, the dissimilatory process is typical for SRB. A terminal product of this metabolism pathway is hydrogen sulfide, which can be involved in gut inflammation and also causes problems in industries (due to corrosion effects).
  • 2.0K
  • 26 May 2021
Topic Review
CLIP
CLIP (cross-linking immunoprecipitation) is a method used in molecular biology that combines UV cross-linking with immunoprecipitation in order to analyse protein interactions with RNA or to precisely locate RNA modifications (e.g. m6A). CLIP-based techniques can be used to map RNA binding protein binding sites or RNA modification sites of interest on a genome-wide scale, thereby increasing the understanding of post-transcriptional regulatory networks.
  • 2.0K
  • 21 Oct 2022
Topic Review
Immunogenic Cell Death
Immunogenic cell death (ICD) is a type of death, which has the hallmarks of necroptosis and apoptosis, and is best characterized in malignant diseases.
  • 2.0K
  • 18 Feb 2021
Topic Review
TDP-43 Role in Chromatin Remodeling and Transcription
TDP-43 gained momentum in the neurodegeneration field when it was first discovered that almost all amyotrophic lateral sclerosis (ALS) cases and as many as half of frontotemporal dementia (FTD) cases present pathological ubiquitinated inclusions of TDP-43. Its involvement in chromatin silencing and nuclear/cytoplasmic shuttling constitute convergent key findings from several biological screens, and several crucial epigenetic factors appear to be able to modify TDP-43-induced degeneration. TDP-43 activity at the chromatin level and its implication in the regulation of DNA transcription and stability -such as DNA repair and regulation of retrotransposons activity- are further supported by a continuously growing amount of studies.
  • 2.0K
  • 19 Sep 2023
Topic Review
Nephronectin
Nephronectin (NPNT) was originally identified as an ECM protein by two independent research groups in 2001. Brandenberger et al. reported NPNT to be involved in the embryonic development of the kidney, hence the name nephronectin (nephron: unit within the kidney; nectin: cellular adhesion proteins). Morimura and colleagues discovered the same protein to be associated with osteoblast differentiation, and named it preosteoblast epidermal growth factor-like repeat protein with meprin, A5 protein and receptor protein-tyrosine phosphatase µ domain (POEM).
  • 2.0K
  • 08 Apr 2021
Topic Review
FAHFAs
Fatty Acid esters of Hydroxy Fatty Acids (FAHFAs) are ester derivatives of fatty acids (FAs) with hydroxy fatty acids (HFAs) carrying the hydroxyl group at different positions. This novel class of endogenously generated lipids, discovered in 2014, has attracted the interest, because such lipids have been found to exhibit anti-diabetic and anti-inflammatory effects. The great number of possible combinations of FAs with HFAs together with the great number of possible positional isomers makes the analysis of FAHFAs very challenging. FAHFAs have been detected and quantified in a variety of human and animal tissues, as well as in plant tissues and foods. Analytical methodologies, either targeted or untargeted, may highly contribute in studying FAHFA levels under various biomedical conditions, and in understanding their role in physiological and pathological conditions.
  • 1.9K
  • 04 Aug 2020
Topic Review
Tau Isoforms
Tau was first described as a natively unfolded microtubule-associated protein. In fact, its main function is to promote the assembly of microtubules and stabilize their structure. However, Tau proteins have a variety of other functions, which include maintaining the structural integrity of neurons, contributing to signal transmission between neurons, and axonal transport. Tau also plays a role in regulating myelination, iron homeostasis, and neurogenesis and may also support synaptic plasticity. Other roles attributed to Tau are gene expression regulation, DNA protection, genome stability, microRNA activity, RNA protection, RNA metabolism, and protein synthesis.
  • 1.9K
  • 27 Dec 2022
Topic Review
Skeletal Muscle
Skeletal muscle is composed of multinucleated, mature muscle cells (myofibers) responsible for contraction, and a resident pool of mononucleated muscle cell precursors (MCPs), that are maintained in a quiescent state in homeostatic conditions. Skeletal muscle is remarkable in its ability to adapt to mechanical constraints, a property referred as muscle plasticity and mediated by both MCPs and myofibers. This review summarizes recent insights into the mechanisms underlying nuclear force transmission in MCPs and myofibers. 
  • 1.9K
  • 11 Oct 2021
Topic Review
Cancer Stem Cells
Cancer Stem Cells (CSCs) is a subset of cancer cells with the ability to self-renew and to differentiate into non-CSC cancer cells within the tumor mass. The CSC field was shaped by great research done on hematopoietic stem cells (HSCs). HSCs are hierarchically arranged with HSCs being the founder cells that undergo asymmetric cell division giving rise to differentiated daughter cells and one quiescent stem cell with self-renewal abilities. CSCs are a subpopulation of cancer cells known to be resistant to therapy and cause metastasis. CSCs have been characterized in many cancers with data illustrating that CSCs display great abilities to self-renew, resist therapies due to enhanced epithelial to mesenchymal (EMT) properties, enhanced expression of ATP-binding cassette (ABC) membrane drug transporters, activation of several survival signaling pathways and increased immune evasion as well as DNA repair mechanisms. CSCs also display great heterogeneity with the consequential lack of specific CSC markers presenting a great challenge to their targeting.
  • 1.9K
  • 15 May 2023
Topic Review
Human Dental Pulp Stem Cells
Human dental pulp stem cells (hDPSCs) are adult mesenchymal stem cells (MSCs) obtained from dental pulp and derived from the neural crest. They can differentiate into odontoblasts, osteoblasts, chondrocytes, adipocytes and nerve cells, and they play a role in tissue repair and regeneration.
  • 1.9K
  • 29 May 2023
Topic Review
BH3-Only Proteins Noxa and Puma in Apoptosis Regulation
Apoptosis is an evolutionarily conserved and tightly regulated cell death pathway. Physiological cell death is important for maintaining homeostasis and optimal biological conditions by continuous elimination of undesired or superfluous cells. The BH3-only pro-apoptotic members are strong inducers of apoptosis. The pro-apoptotic BH3-only protein Noxa activates multiple death pathways by inhibiting the anti-apoptotic B-cell lymphoma-2 (Bcl-2) family protein, Mcl-1, and other protein members leading to Bax and Bak activation and mitochondrial outer membrane permeabilization (MOMP). On the other hand, Puma is induced by p53-dependent and p53-independent apoptotic stimuli in several cancer cell lines. Moreover, this protein is involved in several physiological and pathological processes, such as immunity, cancer, and neurodegenerative diseases. Future heat shock research could disclose the effect of hyperthermia on both Noxa and BH3-only proteins. This suggests post-transcriptional mechanisms controlling the translation of both Puma and Noxa mRNA in heat-shocked cells. 
  • 1.9K
  • 10 Mar 2022
Topic Review
Autophagy and Apoptotic Pathways in Multiple Myeloma
Multiple myeloma (MM) is caused by aberrant plasma cells (PCs) in the bone marrow (BM), representing 1% of neoplastic diseases and 13% of hematological neoplasms. MM is a challenging cancer to diagnose and treat.
  • 1.9K
  • 16 Jan 2023
Topic Review
Autophagy in Glioma
Abstract: Glioblastoma multiforme is the most malignant and aggressive type of brain neoplasm, with a mean life expectancy of less 15 months after diagnosis, despite a diversity of treatments, including surgery, radiation, chemotherapy, and immunotherapy. The resistance of GBM to various therapies is due to a highly mutated genome; these genetic changes induce a de-regulation of several signaling pathways and result in higher cell proliferation rates, angiogenesis, invasion, and a marked resistance to apoptosis; this latter trait is a hallmark of highly invasive tumor cells, such as glioma cells. Due to a defective apoptosis in gliomas, induced autophagic death can be an alternative to remove tumor cells. Paradoxically, however, autophagy in cancer can promote either a cell death or survival. Modulating the autophagic pathway as a death mechanism for cancer cells has prompted the use of both inhibitors and autophagy inducers. The autophagic process, either as a cancer suppressing or inducing mechanism in high-grade gliomas is discussed in this section.  
  • 1.9K
  • 02 Nov 2020
Topic Review
Molecular Inversion Probe
Molecular Inversion Probe (MIP) belongs to the class of Capture by Circularization molecular techniques for performing genomic partitioning, a process through which one captures and enriches specific regions of the genome. Probes used in this technique are single stranded DNA molecules and, similar to other genomic partitioning techniques, contain sequences that are complementary to the target in the genome; these probes hybridize to and capture the genomic target. MIP stands unique from other genomic partitioning strategies in that MIP probes share the common design of two genomic target complementary segments separated by a linker region. With this design, when the probe hybridizes to the target, it undergoes an inversion in configuration (as suggested by the name of the technique) and circularizes. Specifically, the two target complementary regions at the 5’ and 3’ ends of the probe become adjacent to one another while the internal linker region forms a free hanging loop. The technology has been used extensively in the HapMap project for large-scale SNP genotyping as well as for studying gene copy alterations and characteristics of specific genomic loci to identify biomarkers for different diseases such as cancer. Key strengths of the MIP technology include its high specificity to the target and its scalability for high-throughput, multiplexed analyses where tens of thousands of genomic loci are assayed simultaneously.
  • 1.9K
  • 02 Nov 2022
Topic Review
Anti-Prostate Cancer Properties of Anthocyanidins/Anthocyanins
As water-soluble flavonoid derivatives, anthocyanidins and anthocyanins are the plants pigments mostly rich in berries, pomegranate, grapes, and dark color fruits. Many bioactivity properties of these advantageous phytochemicals have been reported; among them, their significant abilities in the suppression of tumor cells are of the promising therapeutic features, which have recently attracted great attention. The prostate malignancy, is considered the 2nd fatal and the most distributed cancer type in men worldwide.  In general, the anthocyanins (especifically cyanidin-3-O-glucoside) indicated higher activity against prostatic neoplasms compared to their correlated anthocyanidins (e.g., delphinidin); in which potent anti-inflammatory, apoptosis, and anti-proliferative activities were analyzed. 
  • 1.9K
  • 11 Apr 2022
Topic Review
Piezo Channels in Bone
Mechanotransduction is an important process for living cells and tissues by which they experience and respond to mechanical stimuli. Cellular mechanotransduction is crucial for bone development and physiology, and abnormal cellular mechanotransduction leads to various bone diseases, including osteoporosis (OP) and osteoarthritis (OA). Piezo channels are mechanosensitive ion channels located in the cell membrane and function as key cellular mechanotransducers for converting mechanical stimuli into electrochemical signals. The Piezo channels play crucial roles in numerous physiological and pathological process by functioning as cellular mechanotransducers. Under mechanical stimuli, Piezo channels are opened to make cationic ions cross membrane, which promotes cellular mechanotransduction to adapt to the microenvironment.
  • 1.9K
  • 01 Jul 2021
Topic Review
Hereditary Nonpolyposis Colorectal Cancer
Hereditary nonpolyposis colorectal cancer (HNPCC) or Lynch syndrome is an autosomal dominant genetic condition that is associated with a high risk of colon cancer as well as other cancers including endometrial cancer (second most common), ovary, stomach, small intestine, hepatobiliary tract, upper urinary tract, brain, and skin. The increased risk for these cancers is due to inherited mutations that impair DNA mismatch repair. It is a type of cancer syndrome. Because patients with Lynch syndrome can have polyps, the term HNPCC has fallen out of favor.
  • 1.9K
  • 05 Dec 2022
  • Page
  • of
  • 81
Academic Video Service