You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Triboelectric Nanogenerators Based on 2D Materials
The development and production of nanogenerators provide a promising solution to address the energy crisis. Triboelectric nanogenerators, in particular, have attracted significant attention due to their portability, stability, high energy conversion efficiency, and compatibility with a wide range of materials. Triboelectric nanogenerators (TENGs) have many potential applications in various fields, such as artificial intelligence (AI) and the Internet of Things (IoT). Additionally, by virtue of their remarkable physical and chemical properties, two-dimensional (2D) materials, such as graphene, transition metal dichalcogenides (TMDs), hexagonal boron nitride (h-BN), MXenes, and layered double hydroxides (LDHs), have played a crucial role in the advancement of TENGs. 
  • 928
  • 23 May 2023
Biography
Herman Carr
Herman Y. Carr (November 28, 1924 – April 9, 2008), who published as H. Y. Carr, was an American physicist and pioneer of magnetic resonance imaging. Dr. Carr was born in Alliance, Ohio where he was an Alliance High School graduate in January 1943; he later was inducted into their Hall of Fame. He served in the Army as a Sergeant in the 12th Weather Squadron Air Corps during World War II in It
  • 927
  • 08 Dec 2022
Topic Review
Silicon and Silicon Carbide Recrystallization by Laser Annealing
Modifying material properties within a specific spatial region is a pivotal stage in the fabrication of microelectronic devices. Laser annealing emerges as a compelling technology, offering precise control over the crystalline structure of semiconductor materials and facilitating the activation of doping ions in localized regions. This obviates the necessity for annealing the entire wafer or device. 
  • 912
  • 29 Dec 2023
Topic Review
Atom Chips for Absolute Gravity Sensors
As a powerful tool in scientific research and industrial technologies, the cold atom absolute gravity sensor (CAGS) based on cold atom interferometry has been proven to be the most promising new generation high-precision absolute gravity sensor. However, large size, heavy weight, and high–power consumption are still the main restriction factors of CAGS being applied for practical applications on mobile platforms. Combined with cold atom chips, it is possible to drastically reduce the complexity, weight, and size of CAGS.
  • 893
  • 07 Jun 2023
Topic Review
CAPP Biological Activities
Plasma is an electrically conducting medium that responds to electric and magnetic fields. Most of the visible matter in the universe (about 99%), such as stars, nebulas and interstellar medium, is in the state of plasma. It consists of large quantities of highly reactive species, such as ions, energetic electrons, exited atoms and molecules, ultraviolet photons, and active radicals in different temperatures. Non-thermal or cold plasmas are partially ionized gases whose electron temperatures usually exceed several tens of thousand degrees K, while the ions and neutrals have much lower temperatures. Due to the presence of reactive species at low temperature, the biological effects of non-thermal plasmas have been studied for application in the medical area with promising results.
  • 877
  • 13 Apr 2021
Topic Review
Quantum Light Source Based on Semiconductor Quantum Dots
Quantum light sources that generate single photons and entangled photons have important applications in the fields of secure quantum communication and linear optical quantum computing. Self-assembled semiconductor quantum dots, also known as “artificial atoms”, have discrete energy-level structures due to electronic confinement in all three spatial dimensions. It has the advantages of high stability, high brightness, deterministic, and tunable emission wavelength, and is easy to integrate into an optical microcavity with a high-quality factor, which can realize a high-performance quantum light source.
  • 854
  • 20 Jun 2023
Topic Review
Bragg Grating Structures Based on a Semiconductor Platform
Optical waveguides (WGs), in the traditional sense, are translucent geometries with a refractive index difference that directs optical beams via total internal reflection. A Bragg grating (BG) structure is a regular WG with periodic refractive index (RI) variations running across it.
  • 851
  • 11 Jul 2022
Topic Review
Multiphysics Data for Mineral Exploration
Different geophysical methods provide information about various physical properties of rock formations and mineralization. In many cases, this information is mutually complementary. At the same time, inversion of the data for a particular survey is subject to considerable uncertainty and ambiguity as to causative body geometry and intrinsic physical property contrast. One productive approach to reducing uncertainty is to jointly invert several types of data. Non-uniqueness can also be reduced by incorporating additional information derived from available geological and/or geophysical data in the survey area to reduce the searching space for the solution. This additional information can be incorporated in the form of a joint inversion of multiphysics data. 
  • 844
  • 13 Jul 2021
Topic Review
Impact of Nanostructured Silicon on Thermoelectric Performance
Nanostructured materials remarkably improve the overall properties of thermoelectric devices, mainly due to the increase in the surface-to-volume ratio. This behavior is attributed to an increased number of scattered phonons at the interfaces and boundaries of the nanostructures. Among many other materials, nanostructured Si was used to expand the power generation compared to bulk crystalline Si, which leads to a reduction in thermal conductivity. However, the use of nanostructured Si leads to a reduction in the electrical conductivity due to the formation of low dimensional features in the heavily doped Si regions. Accordingly, the fabrication of hybrid nanostructures based on nanostructured Si and other different nanostructured materials constitutes another strategy to combine a reduction in the thermal conductivity while keeping the good electrical conduction properties. 
  • 842
  • 08 Aug 2022
Topic Review
Simulation Argument (Coding Planck Units)
Coding Planck units for deep universe (Programmer God) Simulation Hypothesis models The deep universe simulation hypothesis or simulation argument is the argument that the universe in its entirety, down to the smallest detail, could be an artificial simulation, such as a computer simulation. A deep universe simulation begins with the big bang and is programmed by an external intelligence (external to the universe), this intelligence by definition a Programmer God in the creator of the universe context. In Big Bang cosmology, the Planck epoch or Planck era is the earliest stage of the Big Bang, where cosmic time was equal to Planck time. Thus for a deep universe simulation, Planck time can be used as the reference for the simulation clock-rate, with the simulation operating at or below the Planck scale, and with the Planck units as (top-level) candidates for the base (mass, length, time, charge) units.
  • 841
  • 22 Nov 2022
Topic Review
Neurofeedback and Neuromodulation
Neurofeedback is a non-invasive therapeutic approach that has gained traction in recent years, showing promising results for various neurological and psychiatric conditions. It involves real-time monitoring of brain activity, allowing individuals to gain control over their own brainwaves and improve cognitive performance or alleviate symptoms. The use of electroencephalography (EEG), such as brain–computer interface (BCI), transcranial direct current stimulation (tDCS), and transcranial magnetic stimulation (TMS), has been instrumental in developing neurofeedback techniques.
  • 827
  • 10 Aug 2023
Topic Review
The Early Days of Personal Solar Ultraviolet Dosimetry
In the early 1970s, environmental conservationists were becoming concerned that a reduction in the thickness of the atmospheric ozone layer would lead to increased levels of ultraviolet (UV) radiation at ground level, resulting in higher population exposure to UV and subsequent harm, especially a rise in skin cancer. At the time, no measurements had been reported on the normal levels of solar UV radiation which populations received in their usual environment, so this lack of data, coupled with increasing concerns about the impact to human health, led to the development of simple devices that monitored personal UV exposure. 
  • 811
  • 22 Dec 2021
Topic Review
Biomedical Applications of Random Lasing
A disordered photonic medium is one in which scatterers are distributed randomly. Light entering such media experiences multiple scattering events, resulting in a “random walk”-like propagation. Micro- and nano-scale structured disordered photonic media offer platforms for enhanced light–matter interaction, and in the presence of an appropriate gain medium, coherence-tunable, quasi-monochromatic lasing emission known as random lasing can be obtained.
  • 809
  • 11 Sep 2023
Topic Review
Filters Based on TSLCs and Templated-TSLCs
An optical filter is one of the indispensable devices in massive and high-speed communication, optical signal processing, and display. Twist-structure liquid crystals, cholesteric liquid crystals, blue-phase liquid crystals, and sphere-phase liquid crystals show potential application in optical filters originating from the periodic nanostructures. Wavelength and bandwidth tuning can be controlled via temperature, electric fields, light, angle, spatial control, and templating technology. 
  • 805
  • 30 Nov 2022
Topic Review
Terahertz Technologies for Virus Sensing
The recent pandemic of SARS-CoV-2 virus has made evident critical issues relating to virus sensing and the need for deployable tools for adequate, rapid, effective viral recognition on a large-scale. Although many conventional molecular and immuno-based techniques are widely used for these purposes, they still have some drawbacks concerning sensitivity, safety, laboriousness, long-term collection and data analysis. Therefore, new rapidly emerging approaches have been introduced such as terahertz (THz)-based technologies. The emerging Terahertz (THz) technology is an ideal candidate for virus monitoring and detection purposes, offering various advantages which can be explored. 
  • 803
  • 20 Jan 2023
Topic Review
Brief History of Gel Dosimetry
Advances in radiotherapy technology have significantly improved both dose conformation to tumors and the preservation of healthy tissues, achieving almost real-time feedback by means of high-precision treatments and theranostics. Therefore, developing high-performance systems capable of coping with the challenging requirements of modern ionizing radiation is a key issue to overcome the limitations of traditional dosimeters. In this regard, a deep understanding of the physicochemical basis of gel dosimetry, as one of the most promising tools for the evaluation of 3D high-spatial-resolution dose distributions, represents the starting point for developing new and innovative systems. 
  • 802
  • 02 Nov 2022
Topic Review
Interpenetrating Bulk Heterojunction Quantum Dot Solar Cells
Interpenetrating bulk heterojunction (IBHJ) quantum dot solar cells (QDSCs) offer a direct pathway for electrical contacts to overcome the trade-off between light absorption and carrier extraction. However, their complex three-dimensional structure creates higher requirements for the optimization of their design due to their more difficult interface defect states control, more complex light capture mechanism, and more advanced QD deposition technology. ZnO nanowire (NW) has been widely used as the electron transport layer (ETL) for this structure. Hence, the optimization of the ZnO NW morphology (such as density, length, and surface defects) is the key to improving the photoelectric performance of these SCs.
  • 797
  • 18 Feb 2022
Topic Review
Graphene Nanocomposites in Space Sector
Graphene is one of the most significant carbon nanomaterials, with a one-atom-thick two-dimensional nanostructure. Like other nanocarbons, graphene has been used as a polymer reinforcement.
  • 796
  • 15 Mar 2023
Topic Review
Non-Targeted Effects of Australian and European Synchrotrons
The Australian Synchrotron (AS) and the European Synchrotron Radiation Facility (ESRF) are best configured for a wide range of biomedical research involving animals and future cancer patients. Due to ultra-high dose rates, treatment doses can be delivered within milliseconds, abiding by FLASH radiotherapy principles. In addition, a homogeneous radiation field can be spatially fractionated into a geometric pattern called microbeam radiotherapy (MRT); a coplanar array of thin beams of microscopic dimensions. Both are clinically promising radiotherapy modalities because they trigger a cascade of biological effects that improve tumor control, while increasing normal tissue tolerance compared to conventional radiation. Synchrotrons can deliver high doses to a very small volume with low beam divergence, thus facilitating the study of non-targeted effects of these novel radiation modalities in both in-vitro and in-vivo models. Non-targeted radiation effects studied at the AS and ESRF include monitoring cell–cell communication after partial irradiation of a cell population (radiation-induced bystander effect, RIBE), the response of tissues outside the irradiated field (radiation-induced abscopal effect, RIAE), and the influence of irradiated animals on non-irradiated ones in close proximity (inter-animal RIBE).
  • 781
  • 19 Apr 2022
Topic Review
Imaging Biomarkers
Imaging biomarkers (IBs) have been proposed in medical literature that exploit images in a quantitative way, going beyond the visual assessment. These IBs can be used in the diagnosis, prognosis, and response assessment of several pathologies and are very often used for patient management pathways.
  • 756
  • 26 Oct 2023
  • Page
  • of
  • 10
Academic Video Service