Your browser does not fully support modern features. Please upgrade for a smoother experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Exogenous Response Heal Promoting Bone
Bone damage leading to bone loss can arise from a wide range of causes, including those intrinsic to individuals such as infections or diseases with metabolic (diabetes), genetic (osteogenesis imperfecta), and/or age-related (osteoporosis) etiology, or extrinsic ones coming from external insults such as trauma or surgery. Although bone tissue has an intrinsic capacity of self-repair, large bone defects often require anabolic treatments targeting bone formation process and/or bone grafts, aiming to restore bone loss. The current bone surrogates used for clinical purposes are autologous, allogeneic, or xenogeneic bone grafts, which although effective imply a number of limitations: the need to remove bone from another location in the case of autologous transplants and the possibility of an immune rejection when using allogeneic or xenogeneic grafts.
  • 1.0K
  • 28 Sep 2021
Topic Review
Ribosome-Inactivating Proteins
Ribosome-inactivating proteins (RIPs) are rRNA N-glycosylases from plants (EC 3.2.2.22) that inactivate ribosomes thus inhibiting protein synthesis.
  • 1.0K
  • 25 Feb 2021
Topic Review
Glucomannan in Dendrobium catenatum
Dendrobium catenatum is a classical and precious dual-use plant for both medicine and food in China. It was first recorded in Shen Nong’s Herbal Classic, and has the traditional functions of nourishing yin, antipyresis, tonifying the stomach, and promoting fluid production. The stem is its medicinal part and is rich in active polysaccharide glucomannan. As an excellent dietary fiber, glucomannan has been experimentally confirmed to be involved in anti-cancer, enhancing immunity, lowering blood sugar and blood lipids, etc.
  • 1.0K
  • 14 Nov 2022
Topic Review
Recurrent Spliceosome Mutations in Cancer
Splicing alterations have been widely documented in tumors where the proliferation and dissemination of cancer cells is supported by the expression of aberrant isoform variants. Splicing is catalyzed by the spliceosome, a ribonucleoprotein complex that orchestrates the complex process of intron removal and exon ligation. In recent years, recurrent hotspot mutations in the spliceosome components U1 snRNA, SF3B1, and U2AF1 have been identified across different tumor types. Such mutations in principle are highly detrimental for cells as all three spliceosome components are crucial for accurate splice site selection: the U1 snRNA is essential for 3′ splice site recognition, and SF3B1 and U2AF1 are important for 5′ splice site selection. Nonetheless, they appear to be selected to promote specific types of cancers.
  • 1.0K
  • 17 Jan 2022
Topic Review
Synthetic Polymers and Protein Fibrillation under Crowded Conditions
Protein amyloid fibrils have widespread implications for human health. Fibrillation has been studied using a variety of crowding agents to mimic the packed interior of cells or to probe the mechanisms and pathways of the process. One commonly used class of crowding agents is synthetic polymers. Complex effects are observed depending on the specific paring of polymer and fibrillating protein, but generally crowding with synthetic polymers favors fibrillation.
  • 1.0K
  • 22 Jul 2022
Topic Review
Extracellular Alpha-Synuclein
Alpha-synuclein (α-syn) is a small protein composed of 140 amino acids and belongs to the group of intrinsically disordered proteins. It is a soluble protein that is highly expressed in neurons and expressed at low levels in glial cells. The monomeric protein aggregation process induces the formation of oligomeric intermediates and proceeds towards fibrillar species. These α-syn conformational species have been detected in the extracellular space and mediate consequences on surrounding neurons and glial cells. In particular, higher-ordered α-syn aggregates are involved in microglial and oligodendrocyte activation, as well as in the induction of astrogliosis. These phenomena lead to mitochondrial dysfunction, reactive oxygen and nitrogen species formation, and the induction of an inflammatory response, associated with neuronal cell death. Several receptors participate in cell activation and/or in the uptake of α-syn, which can vary depending on the α-syn aggregated state and cell types. The receptors involved in this process are of outstanding relevance because they may constitute potential therapeutic targets for the treatment of PD and related synucleinopathies.
  • 1.0K
  • 27 Jun 2022
Topic Review
Ferredoxin-NADP+ Oxidoreductase and Flavodoxin
Distinct isoforms of FAD-containing ferredoxin-NADP+ oxidoreductase (FNR) and ferredoxin (Fd) are involved in photosynthetic and non-photosynthetic electron transfer systems. The FNR (FAD)-Fd [2Fe-2S] redox pair complex switches between one- and two-electron transfer reactions in steps involving FAD semiquinone intermediates. In cyanobacteria and some algae, one-electron carrier Fd serves as a substitute for low-potential FMN-containing flavodoxin (Fld) during growth under low-iron conditions. This complex evolves into the covalent FNR (FAD)-Fld (FMN) pair, which participates in a wide variety of NAD(P)H-dependent metabolic pathways as an electron donor, including bacterial sulfite reductase, cytochrome P450 BM3, plant or mammalian cytochrome P450 reductase and nitric oxide synthase isoforms. These electron transfer systems share the conserved Ser-Glu/Asp pair in the active site of the FAD module. In addition to physiological electron acceptors, the NAD(P)H-dependent diflavin reductase family catalyzes a one-electron reduction of artificial electron acceptors such as quinone-containing anticancer drugs. Conversely, NAD(P)H: quinone oxidoreductase (NQO1), which shares a Fld-like active site, functions as a typical two-electron transfer antioxidant enzyme, and the NQO1 and UDP-glucuronosyltransfease/sulfotransferase pairs function as an antioxidant detoxification system.
  • 1.0K
  • 17 Nov 2022
Topic Review
MiRNAs in Pregnant Corpus Luteum
Recent scientific developments in understanding the lifespan of the corpus luteum provided new insights into dynamic molecular changes occurring during transition of this fascinating endocrine gland into the organ supporting pregnancy. Processes such as oocyte-sperm interaction, preparation of the uterus for implantation, blastocyst attachment, and successful gestation are mainly driven by progesterone, a steroid hormone produced by the corpus luteum. Inadequate production of progesterone has been described in several mammals, including humans, as luteal phase deficiency, a condition in which endogenous progesterone is insufficient to support pregnancy. Thus, it is essential to extend knowledge about the molecular mechanisms controlling the function of the corpus luteum. Unfortunately, still there is a lack of data explaining the regulation of core molecules responsible for the maintenance of luteal function. Recent studies shed a new light on the molecular mechanisms supporting luteal function, involving microRNAs.
  • 1.0K
  • 29 Oct 2020
Topic Review
Biogenic Volatile Organic Compounds
Upon pathogen attack, plants very quickly undergo rather complex physico-chemical changes, such as the production of new chemicals or alterations in membrane and cell wall properties, to reduce disease damages. An underestimated threat is represented by root parasitic nematodes. In Vitis vinifera L., the nematode Xiphinema index is the unique vector of Grapevine fanleaf virus, responsible for fanleaf degeneration, one of the most widespread and economically damaging diseases worldwide. The aim of this study was to investigate changes in the emission of biogenic volatile organic compounds (BVOCs) in grapevines attacked by X. index. BVOCs play a role in plant defensive mechanisms and are synthetized in response to biotic damages. In our study, the BVOC profile was altered by the nematode feeding process. We found a decrease in β-ocimene and limonene monoterpene emissions, as well as an increase in α-farnesene and α-bergamotene sesquiterpene emissions in nematode-treated plants. Moreover, we evaluated the PR1 gene expression. The transcript level of PR1 gene was higher in the nematode-wounded roots, while in the leaf tissues it showed a lower expression compared to control grapevines.
  • 1.0K
  • 15 Jul 2020
Topic Review
Src Family Kinase
Src family kinases (SFKs) are key regulators of cell proliferation, differentiation, and survival. The expression of these non-receptor tyrosine kinases is strongly correlated with cancer development and tumor progression. Thus, this family of proteins serves as an attractive drug target.
  • 1.0K
  • 14 Jul 2021
Topic Review
Aerobic Exercise-Induced Cardiac Regeneration
The leading cause of heart failure is cardiomyopathy and damage to the cardiomyocytes. Adult mammalian cardiomyocytes have the ability to regenerate, but this cannot wholly compensate for myocardial cell loss after myocardial injury. Studies have shown that exercise has a regulatory role in the activation and promotion of regeneration of healthy and injured adult cardiomyocytes. However, current research on the effects of aerobic exercise in myocardial regeneration is not comprehensive. This study discusses the relationships between aerobic exercise and the regeneration of cardiomyocytes with respect to complex molecular and cellular mechanisms, paracrine factors, transcriptional factors, signaling pathways, and microRNAs that induce cardiac regeneration. The topics discussed herein provide a knowledge base for physical activity-induced cardiomyocyte regeneration, in which exercise enhances overall heart function and improves the efficacy of cardiac rehabilitation.
  • 1.0K
  • 04 Jan 2021
Topic Review
Stress-associated Plant Acyl-CoA-binding Proteins
Plants are constantly exposed to environmental stresses during their growth and development. Owing to their immobility, plants possess stress-sensing abilities and adaptive responses to cope with the abiotic and biotic stresses caused by extreme temperatures, drought, flooding, salinity, heavy metals and pathogens. Acyl-CoA-binding proteins (ACBPs), a family of conserved proteins among prokaryotes and eukaryotes, bind to a variety of acyl-CoA esters with different affinities and play a role in the transport and maintenance of subcellular acyl-CoA pools. In plants, studies have revealed ACBP functions in development and stress responses through their interactions with lipids and protein partners.
  • 1.0K
  • 03 Jun 2021
Topic Review
Polyethyleneimine-Based Lipopolyplexes
Lipopolyplexes based on poliethylenimine are an interesting platform for future anti-cancer gene therapies. The carrier consists of nucleic acids condensed with poliethylenimine chains and enclosed in lipid vesicles. Lipopolyplexes could be very versatile, what enables tailoring the carrier for specific thereapeutic needs, however the preparation process is a multistage and fairly sensitive one, which additionally requires a specific balance to be maintained between its stability in the body, which would allow the appropriate dose of the preparation to reach the target site, and the ability to release nucleic acid at the right place and time.
  • 1.0K
  • 10 Jan 2022
Topic Review
Gastrointestinal Disorders Involving ICCs and the ENS
The enteric nervous system (ENS) is organized into two plexuses—submucosal and myenteric—which regulate smooth muscle contraction, secretion, and blood flow along the gastrointestinal tract under the influence of the rest of the autonomic nervous system (ANS). Interstitial cells of Cajal (ICCs) are mainly located in the submucosa between the two muscle layers and at the intramuscular level. They communicate with neurons of the enteric nerve plexuses and smooth muscle fibers and generate slow waves that contribute to the control of gastrointestinal motility. They are also involved in enteric neurotransmission and exhibit mechanoreceptor activity. A close relationship appears to exist between oxidative stress and gastrointestinal diseases, in which ICCs can play a prominent role. Thus, gastrointestinal motility disorders in patients with neurological diseases may have a common ENS and central nervous system (CNS) nexus. In fact, the deleterious effects of free radicals could affect the fine interactions between ICCs and the ENS, as well as between the ENS and the CNS.
  • 1.0K
  • 25 Apr 2023
Topic Review
Dietary Phytochemicals in Skin Cancer
Human skin is continuously subjected to environmental stresses, as well as extrinsic and intrinsic noxious agents. Although skin adopts various molecular mechanisms to maintain homeostasis, excessive and repeated stresses can overwhelm these systems, leading to serious cutaneous damage, including both melanoma and non-melanoma skin cancers. Phytochemicals present in the diet possess the desirable effects of protecting the skin from damaging free radicals as well as other benefits. Dietary phytochemicals appear to be effective in preventing skin cancer and are inexpensive, widely available, and well tolerated. Multiple in vitro and in vivo studies have demonstrated the significant anti-inflammatory, antioxidant, and anti-angiogenic characteristics of dietary phytochemicals against skin malignancy. Moreover, dietary phytochemicals affect multiple important cellular processes including cell cycle, angiogenesis, and metastasis to control skin cancer progression. Herein, we discuss the advantages of key dietary phytochemicals in whole fruits and vegetables, their bioavailability, and underlying molecular mechanisms for preventing skin cancer. Current challenges and future prospects for research are also reviewed. To date, most of the chemoprevention investigations have been conducted preclinically, and additional clinical trials are required to conform and validate the preclinical results in humans.
  • 1.0K
  • 27 May 2021
Topic Review
NF-κB Inhibitor DHMEQ
Nuclear factor-κB (NF-κB) was discovered as a transcription factor interacting with the immunoglobulin enhancer sequences. Later it was shown to promote the expression of many inflammatory mediators and apoptosis inhibitory proteins. Therefore, it has been considered to be an attractive molecular target of inflammation therapy and cancer therapy. NF-κB is likely to be involved in the mechanism of most inflammatory diseases. Meanwhile, dehydroxymethylepoxyquinomicin (DHMEQ) is a low molecular weight inhibitor of NF-κB, and its unique mechanisms of action have been elucidated.  It directly binds to and inactivates NF-κB components. It has been widely used to suppress cellular and animal inflammatory disease models and was shown to be potent in vivo anti-inflammatory activity without any toxicity.
  • 1.0K
  • 13 Sep 2021
Biography
Oleg B. Ptitsyn
Oleg Borisovich Ptitsyn was born in Leningrad, USSR, on July 18, 1929. His mother, Iva Ruvimovna Protas (1904–1976), and father, Boris Vladimirovich Ptitsyn (1903–1965), were chemists. In 1941, after the beginning of the Great Patriotic War, 12-year-old Oleg and his mother, then a scientist for the State Optics Institute, were evacuated to the east, across the Volga River, to the town of Yos
  • 1.0K
  • 07 Nov 2022
Topic Review
Molecular Biomarkers of K-RAS Dependency
Oncogenic v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (K-RAS) plays a key role in the development and maintenance of pancreatic ductal adenocarcinoma (PDAC). The targeting of K-RAS would be beneficial to treat tumors whose growth depends on active K-RAS. The analysis of K-RAS genomic mutations is a clinical routine; however, an emerging question is whether the mutational status is able to identify tumors effectively dependent on K-RAS for tailoring targeted therapies. With the emergence of novel K-RAS inhibitors in clinical settings, this question is relevant. Several studies support the notion that the K-RAS mutation is not a sufficient biomarker deciphering the effective dependency of the tumor. Transcriptomic and metabolomic profiles of tumors, while revealing K-RAS signaling complexity and K-RAS-driven molecular pathways crucial for PDAC growth, are opening the opportunity to specifically identify K-RAS-dependent- or K-RAS-independent tumor subtypes by using novel molecular biomarkers. This would help tumor selection aimed at tailoring therapies against K-RAS. In this review, we will present studies about how the K-RAS mutation can also be interpreted in a state of K-RAS dependency, for which it is possible to identify specific K-RAS-driven molecular biomarkers in certain PDAC subtypes, beyond the genomic K-RAS mutational status.
  • 1.0K
  • 31 Jul 2020
Topic Review
MG53 Tissue Repair Regenerative Medicine
Mitsugumin 53 (MG53), a TRIM family protein, plays a key role in repairing cell membrane damage and facilitating tissue regeneration. Clarifying the role of MG53 and its molecular mechanism are important for the application of MG53 in regenerative medicine. In this review, we analyze current research dissecting MG53's function in cell membrane repair and tissue regeneration, and highlight the development of recombinant human MG53 protein as a potential therapeutic agent to repair multiple-organ injuries.  
  • 1.0K
  • 22 Feb 2021
Topic Review
Pol θ as a Central Player in TMEJ
DNA polymerase θ belongs to the A family of DNA polymerases and plays a key role in DNA repair and damage tolerance, including double-strand break (DSB) repair and DNA translesion synthesis. During Pol θ-mediated end joining (TMEJ), Pol θ aligns resected 3′-single-stranded DNA ends based on microhomology, fills DNA gaps and generates repair products with deletions of nonhomologous sequences flanking the DSB site.
  • 1.0K
  • 22 Feb 2023
  • Page
  • of
  • 133
Academic Video Service