Bone, a heterogeneous composite material, involves living cells embedded in a mineralized ECM consisting of inorganic and organic phases in addition to water
[17]. While the inorganic phase is composed of a combination of calcium and phosphorus salts, (predominantly in the form of hydroxyapatite (HA; Ca
10(PO
4)
6(OH)
2), the organic fraction comprises mainly collagen type I, and other non-collagenous proteins. The amount, proper arrangement, and characteristics of each of these components (quantity and quality) define the properties of bone. However, the relative amount and characteristics of each of these phases present in a given bone varies with age
[18], location (bone tissue composition varies across anatomic sites in the proximal femur and the iliac crest), gender
[19], and health status
[20]. One of the main challenges of bone tissue engineering is to develop scaffolds using materials that emulate the properties of the native bone, composed of unidirectionally aligned collagen fibrils, and densely mineralized with HA crystals.
2.1. Additive-Free Scaffolds: Calcium Phosphate-Based Scaffolds
Osteoblasts begin the mineralization process with the secretion of vesicles filled with amorphous calcium phosphate (ACP), a calcium phosphate (CaP) precipitate of variable composition that acts as a precursor of mineralized bone matrix. ACP granules are deposited into the collagen fibrils, which subsequently, at a pH above 9, are transformed into HA crystals, resulting in the matured, mineralized collagen matrix
[21]. However, between 7 and 9 pH range, ACP is transformed into octacalcium phosphate (OCP) phase that, in turn, spontaneously converts to stable HA. Depending on the chemical conditions of the environment (pH and ion concentrations) other CaP phases can be found such as dicalcium phosphate dihydrate (brushite) or tricalcium phosphate (TCP) phases. Therefore, the use of CaP-based scaffolds with different formulations (HA, α- and β-TCPs, OCP, ACP, biphasic CaPs or a mixture of HA and β-TCP at varying ratios) have been considered an ideal artificial bone substitute. Their success relies on their biocompatibility, bioactivity, osteoinductivity and osteoconductivity abilities
[22][23]. The mechanism behind the osteoinductive capacity of CaP-based composites has been addressed by a proteomic analysis, which revealed the implication of plasma cell glycoprotein 1 (PC-1), encoded by the ectonucleotide pyrophosphatase/phosphodiesterase 1 gene (
ENPP1), which regulates the mineralization process by hydrolyzing adenosine triphosphate into adenosine monophosphate and pyrophosphate (PPi)
[24]. In fact, only the cells in direct contact with CaP ceramics showed an increase in the expression of
ENPP1 and PC-1 synthesis when compared to non-osteoinductive ceramics, together with other osteogenic markers (bone morphogenetic protein 2 (BMP-2) and Osteopontin), but without affecting the expression of alkaline phosphatase (ALP)
[25]. Extracellular PPi levels are key in regulating the mineralization process; thus, PPi is hydrolyzed by ALP to yield inorganic phosphate, a precursor of bone mineral, but excess PPi inhibits bone mineralization and soft tissue calcification by binding to nascent HA crystals, preventing them from continuing to grow. The increased production of PPi by PC-1 in cells cultured in CaP-based scaffolds negatively regulates tissue mineralization, which draws attention to the modulation of
ENPP1 expression as a regulatory response to CaP-induced human MSCs (hMSCs) differentiation to restrict further mineralization
[24]. Moreover, the fact that
EPNN1/PC-1 over-expression occurs only in cells with direct contact with the ceramic, suggests that a chemically-driven process was occurring at the surface involving the exchange of calcium and phosphate ions between the medium and the material. Thus, in this type of intrinsic osteoinduction, which is also known as material induced heterotropic ossification, calcium and phosphate ions precipitate at the surface of the scaffold, forming an apatite layer generating a local depletion of these ions that triggers cellular differentiation into osteogenic lineage
[26].
Several studies have underlined the fragility of CaP scaffolds (which are highly porous), pointing them out as not suitable for weight-bearing bone defects. Therefore, in order to improve CaP mechanical and structural properties, different combinations have been attempted by adding other components with viscoelastic properties (tolerating high levels of strain or deformation and able to fill irregular-shaped bone defects) such as collagen
[27], alginate
[28], chitosan
[29][30], polylactic acid (PLA)
[31], and polyglycolic acid
[32], giving rise to injectable hydrogel systems. They are typically biocompatible due to their large water content, and less prone to provoke an immune response
[33]. The hydrogel CaP scaffolds seem to be a suitable option for early tissue regeneration since they serve as a temporary matrix, providing mechanical stability and traction for migrating cells from adjacent tissues that gradually degrade the scaffold, replacing it with new bone. Attempts to develop ACP-based scaffolds have also been carried out, due to the fact that ACP particles are easily resorbed, releasing calcium and phosphate ions as they are required for new bone formation. However, since ACP is highly instable and tends to crystallize into brushite and HA minerals, the inhibition of this process has been addressed by generating an ACP hydrogel with PEG, plus the addition of both citrate and zinc, showing the latter the greatest stabilization
[34]. This result paves the way for the future development of stable ACP scaffolds, which could be injected at the lesion site and function as a precursor material for new bone synthesis.
Another noteworthy approach to improve scaffold biomechanical properties rely on the addition of metal traces such as strontium, which is naturally found in bone ECM
[35][36] or non-naturals such us barium titanate
[37][38]. Either one in combination with CaP composites seems to produce a good response regarding not only cellular adherence and proliferation, but promoting osteogenic differentiation. Barium titanate, similar to other solid materials (crystals, certain ceramics, or even bone itself), presents piezoelectric properties, meaning it accumulates electric charge in response to applied mechanical stress. Therefore, these types of materials can be deformed with physiological movements and consequently, provide an electrical stimulation to the tissue microenvironment, enhancing the tissue regeneration without any external source
[39]. Several piezoelectric ceramics including potassium sodium niobate
[40], lithium sodium potassium niobate
[41], zinc oxide
[42], or polymers such as polyvinylidene fluoride and PLA, are being studied to determine which material offers the best properties in terms of developing efficient electroactive prosthetic implants for bone repair
[43][44].
Finally, the combination of CaP-based composites with different components of human bone tissue is also being explored. Over the last 20 years, autografts have been established as the gold standard in bone regeneration procedures, ensuring native structure and properties of bone ECM along with avoiding rejection from the immune system. However, the autologous bone supply is limited and the need to perform an additional surgery leads to the increased possibility of infections and donor site morbidity. The alternative focuses on using xenografts (usually from pigs or bovines
[45][46]), or allografts from healthy donors
[47][48][49]), which although solve the problem of availability, carry the risk of pathogen transmission and may induce the rejection by the recipient. Thus, a successful usage of allografts and xenografts in vivo requires a thorough removal of the component inducing the immune response such as elimination of the donor cells by decellularization
[50][51] while maintaining the composition and functionality of ECM intact, vital for osteogenic induction
[13]. Pulverized human bone and chitosan (a polysaccharide derived from chitin, a natural biopolymer) in combination with a β-TCP scaffold has been shown to promote cellular viability and osteogenic differentiation in vitro
[52]. Even more, ALP activity was increased in the bone-containing sample compared to the control scaffold with only chitosan and CaP. Sargolzaei and coworkers assessed the effect of OCP granules and rat bone matrix gelatin (a polymer derived from the hydrolysis of collagen), alone or in combination, in critical-sized tibia defect in rats
[53]. All three implants exhibited similar positive results, improving bone repair, and showing a good resorption of implanted materials in the early stages of bone formation. However, in the combinatorial scaffold, both type of particles, especially the bone matrix gelatin, were absorbed more rapidly compared to implants of each material alone, which could explain the lack of synergistic effect between OCP and bone matrix gelatin. The same study was performed in a rat mandibular defect model and the combination of OCP and bone matrix gelatin showed significantly better results than each material alone in terms of newly formed bone volume
[54].
In addition to the composition of the material, the osteoinductive capacity of a scaffold designed for bone tissue engineering is highly dependent of the pore microarchitecture. Thus, high porosity and interconnectivity between the pores is essential not only for the correct transport of oxygen, nutrients, and essential factors, but to promote cellular infiltration and vascularization of the tissue. Scaffolds can have pores of different sizes ranging from macropores (>100 μm), which induce the cellular infiltration (such as macrophages to eliminate bacteria) and vascularization, to micropores (<50 µm). Osteoblasts, with an own size of 10–50 μm, prefer larger pores in the range 100–200 μm
[55]. Even more, recent evidences have indicated that a bigger pore size (300–800 µm) leads to better osteoblast colonization, vascularization, and bone formation
[56], accordingly with natural trabecular bone, which presents a pore size of up to 1 mm
[57]. Besides, the morphology and porosity of the graft also influences the degradability and the mechanical properties of the implant. Therefore, when designing the pore size and distribution in a scaffold, it is also necessary to consider the degradability of the material, since high porosity and interconnectivity accelerates the degradation, compromising the mechanical and structural properties of the implant before it is completely substituted by new bone
[57].
The simultaneous addition of micropores together with macropores in CaP-based scaffolds, improves bone growth in the macropores and provides them with better mechanical properties. New bone growth into the micropores improves the load transfer, decreases crack propagation and provides a toughening mechanism due to the chemical bond that forms between CaPs and bone
[58]. The CaP-based materials enable a chemical bond between bone and scaffold through the formation of an apatite layer at the interface of both. Such a strong chemical bond in micropores, which are well-connected with macropores, provides a larger anchoring area that improves the stability and load transfer, resulting in better crack arrests. Definitely, both macro and micropores increase the total surface of the bone-scaffold interface leading to better mechanical integrity and osteointegration of the scaffold within the defect. Besides, micropores can induce capillary forces that enhance the cells to infiltrate and attach to the scaffold, promoting a homogeneous bone distribution
[59]. The increased surface area can therefore offer more protein adsorption sites and accelerate the release of degradation products (calcium, strontium, or magnesium), which facilitate several cellular processes: attachment, proliferation, differentiation, biomineralization, etc.
[60]. In agreement with this line, recently, it has been demonstrated that high microporosity (39%) indirectly enhances osteoconduction in wide-open porous CaP-based scaffolds
[61]. The increased specific surface area facilitate bone ingrowth by increased Ca
2+ ion release, which stimulate the cells for new bone synthesis.
In conclusion, the current trend in the field of tissue engineering focuses on the design of large-scale highly reproducible synthetic scaffolds, with CaP as a key component, which meets the properties that we have discussed, such as osteoconduction, osteoinduction, biocompatibility, and having a degradation rate equal to the new bone formation rate, so that it can be gradually replaced by host tissue. These composites can have different presentations, granules, scaffolds, or hydrogels, with different pore microarchitectures. Moreover, the combination of several materials and micropore sizes favors a synergy between the different components, enhancing the bone regenerative properties of the scaffolds, and compensating their possible weaknesses. Overall, these diverse materials can be further supplemented with active molecules to improve their osteoinductive capacity and promote faster bone healing, which will be discussed in the following section.