Topic Review
Bi-Ssubstituted Iron Garnet Multilayer Structures
In this encyclopaedia entry, we are reporting on the unconventional magnetic switching properties of sputtered all-garnet multilayer thin film structures. Within the scope of this study, thin magnetic trilayers were fabricated on both garnet and glass substrates, in which magneto-soft material layers are sandwiched in-between two magneto-hard garnet material layers of identical composition type.
  • 965
  • 30 Oct 2020
Topic Review
Photocatalytic Electrospun Nanofiber Membranes
Photocatalytic nanofiber membranes are nanofiber membranes infused with photocatalytic nanoparticles. The performance of photocatalytic membranes is attributed to the photogenerated reactive oxygen species such as hydroxyl radicals, singlet oxygen, and superoxide anion radicals produced from reactions with photogenerated electrons and holes introduced by catalytic nanoparticles such as TiO2 and ZnO upon light irradiation. Hydroxyl radicals are the most reactive species responsible for most of the unselective photodegradation of unwanted pollutants. 
  • 960
  • 10 Sep 2021
Topic Review
Smart Biogenic Packaging
Smart biogenic packaging is an innovative, swiftly emerging concept, where sustainability and real-time monitoring of food are coupled together, ensuring safe and healthy food, alongside commercial and ecological prosperity. Smart biogenic packaging integrates active and intelligent packaging solutions to provide consumers with more reliable information about food product conditions. It also generates a shielding effect for the food by incorporating active substances such as antimicrobial agents in a biogenic polymer matrix.
  • 948
  • 15 Apr 2022
Topic Review
Fluoro-Modified Surface
The original fluoro-modified polyurethane encapsulated process was designed to rapidly fabricate low flow-resistance surfaces on the zinc substrate. For the further enhancement of the drag-reduction effect, chemical etching was introduced during the fabrication process, and its surface morphology, wettability, and flow-resistance properties in a microchannel were also studied in this paper. It is indicated that the zinc substrate with micro-nano scale roughness obtained by Cu2+ assisted nitric acid etching was super hydrophilic. However, after the etched zinc substrate encapsulated with fluoro-polyurethane, the superhydrophobic wettability can be obtained. As this newly fabricated surface being applied into the microchannel, it was found that with the increase of Reynolds number, the drag reduction rate of the superhydrophobic surface remained basically unchanged at 4.0 % compared with the original zinc substrate. Furthermore, the prepared superhydrophobic surfaces exhibited outstanding reliability in most liquids, and such chemical-etching methodology were capable to be commercialized in the piping as well as the coating industry.
  • 946
  • 30 Oct 2020
Topic Review
Thermal Barrier Coatings
Thermal barrier coating (TBC) systems have presented an ongoing design issue in bids to improve the lifespan of coatings. A TBC can support an extended lifespan by repairing cracks between interfacial layers during high thermal exposure while at the same time increasing coating thickness. Two deposition techniques, atmospheric plasma spray and water-stabilized plasma spray (WSP), have been distinguished to understand mechanical and thermal performance based on their contrasting torch systems and microstructural characterization.
  • 944
  • 23 Dec 2022
Topic Review
Phenolic Compounds in Food Packaging
The use of phenolic-compound-based active-packaging and edible films/coatings with antimicrobial and antioxidant activities is an innovative approach that has gained widespread attention worldwide. As phenolic compounds are natural bioactive molecules that are present in a wide range of foods, such as fruits, vegetables, herbs, oils, spices, tea, chocolate, and wine, as well as agricultural waste and industrial byproducts, their utilization in the development of packaging materials can lead to improvements in the oxidative status and antimicrobial properties of food products.
  • 938
  • 18 Nov 2022
Topic Review
GLAD Nanostructure SPR sensors
In this encyclopedia entry, we are introducing a new deposit technique called glancing angle deposition (GLAD). We found that this technique is very competitive and proficient method to fabricating a nanostructured surface that enhanced the sensitivity of Surface Plasmon Resonance (SPR) sensors. We fabricated the SPR sensor with hybrid GLAD nanostructures of 30 nm height and with inter-structural gap size of around 12 nm. Theoretical and experimental analyses published in our recent article showed 4 times higher sensitivity compared to that of a conventional SPR sensor.
  • 930
  • 29 Oct 2020
Topic Review
Gas Sensors Based on Titanium Oxides
Nanostructured titanium compounds have recently been applied in the design of gas sensors. Among titanium compounds, titanium oxides (TiO2) are the most frequently used in gas sensing devices. Very recently, the applicability of non-stoichiometric titanium oxide (TiO2−x)-based layers for the design of gas sensors was demonstrated. The most promising titanium compounds and hetero- and nano-structures based on these compounds are discussed and the possibility to tune the sensitivity and selectivity of titanium compound-based sensing layers is addressed.  
  • 915
  • 28 May 2022
Topic Review
Modifications Approaches of Potato Constituents
There are various physical, chemical, and biochemical modifications approaches for potato constituents. Physical modifications to alter the physicochemical properties of powders including starches and proteins are e.g., hydrothermal treatment, irradiation, ultrasonication and high-pressure treatment. Starches and proteins, which have been modified via physical methods do not have to be claimed as “modified”. Physical modification is also viewed as cost-efficient and environmentally friendly, because no hazardous substances (chemicals) are used. Chemical modifications refer to the substitution, cross-linking or degradation of a polymer via chemical reaction. Starch contains a large number of hydroxyl groups, and proteins contain a variety of different functional groups (hydroxyl-, carboxyl-, amine groups, etc.). These functional groups can be used as reactive sides for chemical modification reactions such as acylation, esterification, etherification, cross-linking, grafting, acid hydrolysis and oxidation. Biochemical modifications of starches and proteins including enzymatic substitution, cross-linking or hydrolysis are usually regarded as a clean or green alternative to chemical modification. Throughout the different biochemical modification methods, substrate specific enzymes can be used such as in enzymatic de-/branching modification, where the branched structure of potato starch can be altered to effect starch crystallinity and thus its properties.
  • 895
  • 16 Dec 2022
Topic Review
Titan-based alloys
Titan-based alloys are the most-utilized materials in dental implantology, due to their physical and chemical properties. The various components of the oral environment should be considered in order to obtain a good stability of dental reconstructions. Salivary ions, proteins, enzymes, and microorganisms of the oral biofilm, may interact with and influence the implant's corrosion process. Peri-implantitis is a multifactorial process which needs to be properly addressed in order to prevent secondary implant failure. 
  • 886
  • 01 Nov 2020
Topic Review
Carbon Nanotubes in Nanocomposite Mixed-Matrix Membranes
Carbon nanotubes (CNTs) are a popular material for gas separation because their walls are naturally smooth, allowing for faster gas transit than other inorganic fillers. It also has excellent mechanical strength, allowing membranes to work under high pressure. Although CNTs have superior qualities to other inorganic fillers, incorporating them into a polymer matrix is difficult due to CNTs' strong van der Waals forces, which cause agglomeration. CNT dispersion must be addressed if the full potential of CNTs is to be realized.
  • 873
  • 17 Jun 2022
Topic Review
Growth and Characterizations of SILAR-Deposited Thin Films
The prepared thin films could be used in lasers, cathodic ray tubes, solar cells, infrared windows, ultraviolet light emitting diodes, sensors, supercapacitors, biologic applications, and optoelectronic applications. The properties of these thin films strongly depend on the deposition techniques. Many investigations into the production of various types of thin films (by using the successive ionic layer adsorption and reaction (SILAR) method) were conducted. This method attracts interest as it possesses many advantages when compared to other deposition methods. For example, large area depositions could be carried out in any substrates at lower temperatures via inexpensive instruments; moreover, a vacuum chamber is not required, it has an excellent growth rate, and the unique film properties could be controlled.
  • 865
  • 26 Aug 2022
Topic Review
Thin-Film Fabrication for Low-Temperature Solid Oxide Fuel Cells
Solid oxide fuel cells (SOFCs) are amongst the most widely used renewable alternative energy systems with near-zero carbon emission, high efficiency, and environment-friendly features. However, the high operating temperature of SOFCs is still considered a major challenge due to several issues regarding the materials’ corrosion, unwanted reactions between layers, etc. Thus, low-temperature SOFCs (LT-SOFCs) have gained significant interest during the past decades. Despite the numerous advantages of LT-SOFCs, material selection for each layer is of great importance as the common materials have not shown a desirable performance so far. In addition to the selection of the materials, fabrication techniques have a great influence on the properties of the SOFCs. As SOFCs with thinner layers showed lower polarisation resistance, especially in the electrolyte layer, different thin-film fabrication methods have been employed, and their effect on the overall performance of SOFCs has been evaluated.
  • 858
  • 23 Aug 2023
Topic Review
MoS2 Based Photodetectors
The properties of molybdenum disulfide (MoS2), such as direct band gap transition in low dimensional structures, strong light–matter interaction and good carrier mobility, combined with the possibility of fabricating thin MoS2 films, have attracted interest for this material in the field of optoelectronics. 
  • 855
  • 27 May 2021
Topic Review
Indigo for Non-Toxic and Ecological Gliding Surfaces
The biogenic substance E-indigo can form supramolecular, hydrophobic structures using self-organization. These structures show a low coefficient of friction as a gliding layer against polar surfaces. The formation of primary particles with platelet morphology based on hydrogen-bonded E-indigo molecules is ideal to produce the gliding layer. Structures with excellent gliding properties on ice, snow, and water can be achieved by means of directed friction and high pressure, as well as through tempering. The resulting hard, thin gliding layer of E-indigo does not easily absorb dirt and, thus, prevents a rapid increase in friction. Field tests on snow, with cross-country skis, have shown promising results in comparison to fluorinated and non-fluorinated waxes. Based on quantitative structure–activity relationship (QSAR) data for E-indigo, and its isomers and tautomers, it has been demonstrated that both the application and abrasion of the thin indigo layers are harmless to health, and are ecologically benign and, therefore, sustainable.
  • 855
  • 21 Feb 2022
Topic Review
Palladium-Plated Copper Bonding Wire
Wire-bonding technology is the most commonly used chip interconnection technology in microelectronic packaging. Metal bonding wire is the key material for wire bonding and plays an important role in the reliability of electronic devices. Palladium-plated copper (PdCu) bonding wire has been widely used because of its low cost, good electrical and thermal conductivity, the fact that it is not easy to oxidize, and its high reliability.
  • 853
  • 21 Aug 2023
Topic Review
Multilingualism in and out of Films and Stereotypes
Films serve to (re-)create a ‘world’ within the mind of the audience. Additionally, they introduce or reinforce stereotypes portrayed as a reality of the modern world through multiplexity and the strategic use of foreign languages, dialects, and non-native language use, among others. Various concepts of stereotypes can be explored in fiction feature films, especially as film characters are often based on different kinds of stereotypes. Audiovisual texts tend to operate as cultural constructs that reflect and convey certain ideologies within an industry that holds the power to marginalize or belittle voices. Multilingual films highlight the contrasts among and within cultures; hence, they can further exacerbate the marginalization and stereotyping of different cultures and nations, ultimately having damaging effects on society’s perception of different stereotypes, such as race and gender groups, which is shown with the examples from a multilingual film. 
  • 851
  • 07 Aug 2023
Topic Review
Nanotechnological Smart Food Packaging
Polymer nanocomposites (PNCs) are of real interest because along with the bioactivity induced by the components (or by the polymer itself), these materials due to the composite nature can exhibit some improved physical, chemical, biological, mechanical, electrical, and optical properties compared to individual components [1]. Due to the innovative properties such as maintaining the quality and safety of food but also increasing the shelf-life of the food, nanocomposite packaging has great potential as an innovative food packaging technology. The polymer nanocomposites used in developing food packaging materials are mainly composed of the polymer matrix, nanofillers, plasticizers, and compatibilizers.
  • 838
  • 02 Sep 2020
Topic Review
Copper-Coated Used Fuel Container
The Copper Coated Used Fuel Container is the main containment barrier in the engineered barrier system. The role of copper coated used fuel container is to provide containment for used CANDU (CANada Deuterium Uranium) fuel and any other fuel deemed acceptable for a deep geological repository in accordance with the Nuclear Fuel Waste Act (S.C. 2002, c.23) and Nuclear Waste Management Organization’s waste acceptance criteria.
  • 835
  • 07 Dec 2021
Topic Review
Two-Dimensional Nanomaterials in Organic Solar Cells
The thin-film organic solar cells (OSCs) are currently one of the most promising photovoltaic technologies to effectively harvest the solar energy due to their attractive features of mechanical flexibility, light weight, low-cost manufacturing, and solution-processed large-scale fabrication, etc. However, the relative insufficient light absorption, short exciton diffusion distance, and low carrier mobility of the OSCs determine the power conversion efficiency (PCE) of the devices are relatively lower than their inorganic photovoltaic counterparts. To conquer the challenges, the two-dimensional (2D) nanomaterials, which have excellent photoelectric properties, tunable energy band structure, and solvent compatibility etc., exhibit the great potential to enhance the performance of the OSCs.
  • 834
  • 19 Apr 2022
  • Page
  • of
  • 12
ScholarVision Creations