You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Microbiota–Gut–Brain Axis for the Treatment of Psychological Diseases
While the importance of the intestinal microbiome has been realised for a number of years, the significance of the phrase microbiota–gut–brain axis is only just beginning to be fully appreciated. The microbiome is discussed as if it were a single entity, modifying the expression of the genetic inheritance of the individual by the generation of interkingdom signalling molecules, semiochemicals, such as dopamine. The purpose of the microbiome is to convey information about the microbial environment of the mother so as to calibrate the immune system of the new-born, giving it the ability to distinguish harmful pathogens from the harmless antigens of pollen, for example, or to help distinguish self from non-self. In turn, this requires the partition of nutrition between the adult and its microbiome to ensure that both entities remain viable until the process of reproduction. Accordingly, the failure of a degraded microbiome to interact with the developing gut of the neonate leads to failure of this partition in the adult: to low faecal energy excretion, excessive fat storage, and concomitant problems with the immune system. Similarly, a weakened gut–brain axis distorts interoceptive input to the brain, increasing the risk of psychiatric diseases such as autism.
  • 810
  • 22 Nov 2022
Topic Review
Role of Antioxidants in Maternal Diet during Pregnancy
Chronic diseases represent one of the major causes of death worldwide. It has been suggested that pregnancy-related conditions, such as gestational diabetes mellitus (GDM), maternal obesity (MO), and intra-uterine growth restriction (IUGR) induce an adverse intrauterine environment, increasing the offspring’s predisposition to chronic diseases later in life. There are several CD risks factors an individual can manage. Recent research suggested that the intrauterine environment, which is modulated by maternal behaviors and disease, severely influences the offspring’s CD development risk.
  • 809
  • 15 Nov 2023
Topic Review
Gastrointestinal Tract in Newborns and Appropriate Nutrition
The maturation of the gastrointestinal (GI) system in full-term and preterm human infants is an area of great interest from both a nutritional and medical practice standpoint. Particularly in preterm infants less than 28 gestational weeks (GW), delivery constitutes a nutritional emergency in which the infant has high and difficult-to-meet nutritional needs. A contributing factor to the nutritional emergency is the relatively underdeveloped GI system of premature neonates, which limits their ability to utilize enteral nutrition.
  • 797
  • 08 Apr 2022
Topic Review
Male Reproductive Toxicity of Polybrominated Diphenyl Ethers
Polybrominated diphenyl ethers (PBDE) are a group of flame retardants used in a variety of artificial materials. Despite being phased out in most industrial countries, they remain in the environment and human tissues due to their persistence, lipophilicity, and bioaccumulation. Populational and experimental studies demonstrate the male reproductive toxicity of PBDEs including increased incidence of genital malformations (hypospadias and cryptorchidism), altered weight of testes and other reproductive tissues, altered testes histology and transcriptome, decreased sperm production and sperm quality, altered epigenetic regulation of developmental genes in spermatozoa, and altered secretion of reproductive hormones. A broad range of mechanistic hypotheses of PBDE reproductive toxicity has been suggested. Among these hypotheses, oxidative stress, the disruption of estrogenic signaling, and mitochondria disruption are affected by PBDE concentrations much higher than concentrations found in human tissues, making them unlikely links between exposures and adverse reproductive outcomes in the general population. Robust evidence suggests that at environmentally relevant doses, PBDEs and their metabolites may affect male reproductive health via mechanisms including AR antagonism and the disruption of a complex network of metabolic signaling.
  • 785
  • 24 Nov 2022
Topic Review
Morphometric Analysis of Rat Prostate Development
The molecular mechanisms underlying prostate development can provide clues for prostate cancer research. It has been demonstrated that MEK/ERK signaling downstream of androgen-targeted FGF10 signaling directly induces prostatic branching during development, while Rho/Rho-kinase can regulate prostate cell proliferation. MEK/ERK and Rho/Rho kinase regulate myosin light chain kinase (MLCK), and MLCK regulates myosin light chain phosphorylation (MLC-P), which is critical for cell fate, including cell proliferation, differentiation, and apoptosis.
  • 783
  • 16 Dec 2021
Topic Review
Somatic Embryogenesis in Spinach
Conventional spinach breeding is limited by the very complex sex determination. However, these limitations could be circumvented in synergy with a biotechnological approach. Accordingly, tissue culture techniques allow rapid and efficient clonal propagation of selected valuable genotypes, and somatic embryogenesis has been recognized as a superior process for clonal propagation because somatic embryos resemble zygotic embryos and therefore can spontaneously develop into complete plants. 
  • 778
  • 08 Oct 2023
Topic Review
Transcriptional and Post-Transcriptional Regulation of Autophagy
Autophagy is a widely conserved process in eukaryotes that is involved in a series of physiological and pathological events, including development, immunity, neurodegenerative disease, and tumorigenesis. It is regulated by nutrient deprivation, energy stress, and other unfavorable conditions through multiple pathways. In general, autophagy is synergistically governed at the RNA and protein levels. The upstream transcription factors trigger or inhibit the expression of autophagy- or lysosome-related genes to facilitate or reduce autophagy. Moreover, a significant number of non-coding RNAs (microRNA, circRNA, and lncRNA) are reported to participate in autophagy regulation. Finally, post-transcriptional modifications, such as RNA methylation, play a key role in controlling autophagy occurrence.
  • 777
  • 11 Feb 2022
Topic Review
Ribosome-Induced Cellular Multipotency
Ribosomes are generally acknowledged to perform a critical part in the translation process by decoding messenger RNA into protein. In contrast, ribosomal proteins appear to serve non-translational roles in growth, differentiation, and disease. Dr. Ohta's team recently discovered that ribosomes can revert cellular potency to a multipotent state. Ribosomal incorporation has the potential to influence the fate of both somatic and cancer cells towards multipotency, allowing them to switch cell lineage. Multipotency acquisition occurs alongside cellular stress and cell-cycle arrest in this process.
  • 770
  • 29 Nov 2021
Topic Review
BMP3 Affects Mice Cortical and Trabecular Bone Development
Bone morphogenetic proteins (BMPs) have a major role in tissue development. BMP3 is synthesized in osteocytes and mature osteoblasts and has an antagonistic effect on other BMPs in bone tissue. The main aim of this study was to fully characterize cortical bone and trabecular bone of long bones in both male and female Bmp3−/− mice. To investigate the effect of Bmp3 from birth to maturity, we compared Bmp3−/− mice with wild-type littermates at the following stages of postnatal development: 1 day (P0), 2 weeks (P14), 8 weeks and 16 weeks of age. Bmp3 deletion was confirmed using X-gal staining in P0 animals. Cartilage and bone tissue were examined in P14 animals using Alcian Blue/Alizarin Red staining. Detailed long bone analysis was performed in 8-week-old and 16-week-old animals using micro-CT. The Bmp3 reporter signal was localized in bone tissue, hair follicles, and lungs. Bone mineralization at 2 weeks of age was increased in long bones of Bmp3−/− mice. Bmp3 deletion was shown to affect the skeleton until adulthood, where increased cortical and trabecular bone parameters were found in young and adult mice of both sexes, while delayed mineralization of the epiphyseal growth plate was found in adult Bmp3−/− mice. 
  • 761
  • 23 Jan 2022
Topic Review
Hedgehog Signaling in CNS Remyelination
Remyelination is a fundamental repair process in the central nervous system (CNS) that is triggered by demyelinating events. In demyelinating diseases, oligodendrocytes (OLs) are targeted, leading to myelin loss, axonal damage, and severe functional impairment. While spontaneous remyelination often fails in the progression of demyelinating diseases, increased understanding of the mechanisms and identification of targets that regulate myelin regeneration becomes crucial. Several signaling pathways have been implicated in the remyelination process, including the Hedgehog (Hh) signaling pathway.
  • 759
  • 09 Aug 2022
Topic Review
Nonlinear Microscopy in Developmental Biology: Ultrashort Lasers Application
The evolution of laser technologies and the invention of ultrashort laser pulses have resulted in a sharp jump in laser applications in life sciences. Developmental biology is no exception. The unique ability of ultrashort laser pulses to deposit energy into a microscopic volume in the bulk of transparent material without disrupting the surrounding tissues makes ultrashort lasers a versatile tool for precise microsurgery of cells and subcellular components within structurally complex and fragile specimens like embryos as well as for high-resolution imaging of embryonic processes and developmental mechanisms. 
  • 757
  • 21 Dec 2022
Topic Review
Synthetic Proteins in Dental Applications
Biotechnology and artificial intelligence have sparked a revolution in dentistry, with a focus on restoring natural tissue functions. This transformation has given rise to bioactive materials, inspired by biomimetics, aimed at replicating the processes found in nature. As synthetic biology advances, there is a heightened focus on signaling systems crucial for bio-based diagnostics and therapeutics. Dentistry now harnesses synthetic proteins for tissue regeneration and dental material enhancement. A current research priority is bacterial biofilm inhibition, vital for dental health. Given the role of Streptococcus mutans in dental caries, the development of synthetic antimicrobial peptides targeting this bacterium is underway. The balance of dental enamel between demineralization and remineralization impacts caries formation. Factors such as the presence of hydroxyapatite and salivary peptides influence enamel health. Recent studies have spotlighted salivary protein-inspired peptides for enhanced remineralization.
  • 752
  • 29 Jan 2024
Topic Review
Roles of Nuclear Factor I X in Cancer
NFIX, a member of the nuclear factor I (NFI) family of transcription factors, is known to be involved in muscle and central nervous system embryonic development. However, its expression in adults is limited. Similar to other developmental transcription factors, NFIX has been found to be altered in tumors, often promoting pro-tumorigenic functions, such as leading to proliferation, differentiation, and migration.
  • 744
  • 09 Mar 2023
Topic Review
Drosophila Trachea as a Novel Model of COPD
COPD, a chronic obstructive pulmonary disease, is one of the leading causes of death worldwide. Clinical studies and research in rodent models demonstrated that failure of repair mechanisms to cope with increased ROS and inflammation in the lung leads to COPD. Despite this progress, the molecular mechanisms underlying the development of COPD remain poorly understood, resulting in a lack of effective treatments. Thus, an informative, simple model is highly valued and desired. Recently, the cigarette smoke-induced Drosophila COPD model showed a complex set of pathological phenotypes that resemble those seen in human COPD patients. The Drosophila trachea has been used as a premier model to reveal the mechanisms of tube morphogenesis. The association of these mechanisms to structural changes in COPD can be analyzed by using Drosophila trachea. 
  • 737
  • 08 Dec 2021
Topic Review
Effect of Nanosilver on Humans
Among produced metal nanoparticles, silver nanoparticles are widely used in everyday life products, cosmetics, and medicine. It has already been established that, in nanoscale form, many even inert materials become toxic. 
  • 737
  • 26 Apr 2022
Topic Review
RNA-Binding Proteins and Inner Ear Hair Cell
RNA-binding proteins (RBPs) regulate gene expression at the post-transcriptional level. They play major roles in the tissue- and stage-specific expression of protein isoforms as well as in the maintenance of protein homeostasis. The inner ear is a bi-functional organ, with the cochlea and the vestibular system required for hearing and for maintaining balance, respectively. It is relatively well documented that transcription factors and signaling pathways are critically involved in the formation of inner ear structures and in the development of hair cells. Accumulating evidence highlights emerging functions of RBPs in the post-transcriptional regulation of inner ear development and hair cell function.
  • 737
  • 26 Oct 2022
Topic Review
Retinoic Acid in Development and Disease
Retinoic acid (RA) is a metabolite of vitamin A (retinol) that plays various roles in development to influence differentiation, patterning, and organogenesis. RA also serves as a crucial homeostatic regulator in adult tissues. The role of RA and its associated pathways are well conserved from zebrafish to humans in both development and disease.
  • 731
  • 26 Apr 2023
Topic Review
Whole Genome Duplication in Development, Evolution, and Disease
Whole genome duplication (WGD) or polyploidization can occur at the cellular, tissue, and organismal levels. At the cellular level, tetraploidization has been proposed as a driver of aneuploidy and genome instability and correlates strongly with cancer progression, metastasis, and the development of drug resistance. WGD is also a key developmental strategy for regulating cell size, metabolism, and cellular function. In specific tissues, WGD is involved in normal development (e.g., organogenesis), tissue homeostasis, wound healing, and regeneration. At the organismal level, WGD propels evolutionary processes such as adaptation, speciation, and crop domestication. 
  • 729
  • 30 Jun 2023
Topic Review
The Impact of Hormesis upon Clinical Aging
Digital information technology is placing an increased cognitive load on our neurons. This enriched environment, provides ‘information-that-requires-action’, which acts through hormesis and activates the neuronal stress response. As a result, human neurons are under continual pressure to maintain themselves. Thus, repair resources must be allocated preferentially to the neuron, at the expense of the germline, through the bidirectional cross-talk between neuron vs germline. The result of this hormetic cognitive stress may be a reduction of age-related degeneration, which lasts indefinitely, with a corresponding reduction in reproduction.
  • 726
  • 11 Sep 2023
Topic Review
Enhancers and Promoters in Three Drosophila Model Systems
In higher eukaryotes, the regulation of developmental gene expression is determined by enhancers, which are often located at a large distance from the promoters they regulate. Therefore, the architecture of chromosomes and the mechanisms that determine the functional interaction between enhancers and promoters are of decisive importance in the development of organisms. Mammals and the model animal Drosophila have homologous key architectural proteins and similar mechanisms in the organization of chromosome architecture.
  • 725
  • 04 May 2023
  • Page
  • of
  • 8
Academic Video Service