You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Fuzzy Logic Control for Refrigeration Systems
Logic fuzzy systems are based on the human ability to think, which has allowed controllers to adapt better to systems by finding an approximation to their real behavior.
  • 4.4K
  • 14 Mar 2022
Topic Review
Active Aerodynamic Systems for Road Vehicles
Comfort, safety, high travel speeds, and low fuel consumption are expected characteristics of modern cars. Some of these are in conflict with one other. A solution to this conflict may be time-varying body geometry realized by moving aerodynamic elements and appropriate systems for controlling their motion. 
  • 4.3K
  • 08 Apr 2022
Topic Review
Battery Modelling Techniques
The battery modelling (BM) problem is a constrained, multi-dimensional, mixed variable, non-convex, non-linear optimisation problem. Many bio-inspired techniques have been successfully employed to estimate the battery parameters. When bio-inspired algorithms are implemented for COM to extract parameters in real time, then they are called grey box models.
  • 4.2K
  • 28 Oct 2021
Topic Review
Shipbuilding Supply Chain 4.0
The supply chain is currently taking on a very important role in organizations seekingto improve the competitiveness and profitability of the company. Its transversal character mainly places it in an unbeatable position to achieve this role. This article, through a study of each of the key enabling technologies of Industry 4.0, aims to obtain a general overview of the current state of the art in shipbuilding adapted to these technologies. To do so, a systematic review of what the scientific community says is carried out, dividing each of the technologies into di erent categories. In addition, the global vision of countries interested in each of the enabling technologies is also studied. Both studies present a general vision to the companies of the concerns of the scientific community, thus encouraging research on the subject that is focused on the sustainability of theshipbuilding supply chain.
  • 4.2K
  • 14 Apr 2021
Topic Review
Early Injection for Low Emissions
Low-emission and high-efficiency have always been the targets for Internal Combustion Engine development. For diesel engines, homogeneous charge (aka. HCCI) and premixed charge (aka. PCCI) combustion modes provide both low-emission and high-efficiency simultaneously. To achieve these advanced combustion modes, early injection is needed as a relatively longer air-fuel mixing time is guaranteed. Several key parameters, such as the injection timing, pressure, angle, directly determine the final combustion process and thus the emission and efficiency performance. The pros and cons of these key parameters are discussed in detail here to provide a good review of the early-injection strategy.
  • 4.2K
  • 28 Oct 2020
Topic Review
Thermal Conductivity of Nanofluids
Thermal conductivity is one of the most relevant properties of nanofluids (NFs) and is influenced by shape, size, concentration and surface resistance of the NPs and by the viscosity, pH, temperature, and other characteristics of the base fluid. Several theoretical models and experimental methods were developed to measure this property. The most common measuring methods are the transient hot-wire method followed by the 3ω method, the steady-state parallel plate method and the temperature oscillation method. Despite the growing number of studies, there are still disparities between data generated by the theoretical models and experimental measurements as well as between measurements derived from the same method.
  • 4.2K
  • 17 May 2021
Topic Review
Wind Turbine Blade Failures
The wind turbine is a complex structure. Although there is no single approach and there is variability in the commercial designs, a typical WTB is a thin-walled multi-cellular hollow airfoil shaped cross-section. For its manufacture, a number of materials and material systems are used for structural purposes (fibre composites and sandwich composite systems) as well as aesthetic purposes (primers, UV gel coats, paint, etc). The potential causes of wind turbine blade failures can be classified into the following four categories:1. damage from lightning;2. failures due to fatigue;3. leading edge erosion;4. damage from icing.The types of damage caused to wind turbine blades—originating from the above four different sources—along with their significance to the turbine’s performance and secure operation, are detailed in the following sub-sections.
  • 4.2K
  • 11 Oct 2021
Topic Review Peer Reviewed
Vibration-Assisted Ball Burnishing
Vibration-Assisted Ball Burnishing is a finishing processed based on plastic deformation by means of a preloaded ball on a certain surface that rolls over it following a certain trajectory previously programmed while vibrating vertically. The dynamics of the process are based on the activation of the acoustoplastic effect on the material by means of the vibratory signal transmitted through the material lattice as a consequence of the mentioned oscillation of the ball. Materials processed by VABB show a modified surface in terms of topology distribution and scale, superior if compared to the results of the non-assisted process. Subgrain formation one of the main drivers that explain the change in hardness and residual stress resulting from the process.
  • 4.1K
  • 13 Apr 2022
Topic Review
Ultra-Precision Machining Technologies
In order to reduce the surface/subsurface damage of soft-brittle optical materials and improve their surface quality, it is necessary to carry out ultra-precision machining of soft-brittle optical materials. Common ultra-precision machining techniques for soft-brittle optical materials include abrasive-free deliquescent polishing, single-point diamond turning (SPDT), chemical mechanical polishing (CMP), ultra-precision grinding, micro-milling, ion beam figuring (IBF) and magnetorheological finishing (MRF).
  • 4.0K
  • 29 Oct 2020
Topic Review
Friction Stir Processing
Friction stir processing (FSP) is a material processing technique developed in 1999 derived from friction stir welding (FSW). Developed by Mishra et al., this process utilizes localized plastic deformation by rotating a specialized pin through the working piece. 
  • 3.9K
  • 22 Sep 2021
Topic Review Peer Reviewed
Mechanics and Natural Philosophy in History
This entry presents a historical view of the meaning attributed to the terms mechanics and natural philosophy, from a hint to ancient Greece, the Middle Ages, and the Renaissance to a special focus on the 18th Century, which represents a turning point for the development of modern physics and science in general. Since we are not concerned with the summation of the histories of natural philosophy and mechanics, but only with their interrelations, this makes a detailed description of the two disciplines unnecessary.
  • 3.9K
  • 15 Sep 2022
Topic Review
Wearable User Interface
Making a wearable robot is one of the most important research issues, not only in the bio-mimicking robotics area but also in the conventional robotics or haptics area. There are many advantages for using DEAs for wearable interfaces, such as their small size, flexibility, softness, and customizability. Many wearable haptic interfaces using Dielectric Elastomer Actuators such as tactile displays or vibrotactile displays were suggested from the previous researches. However, there are several challenges in the use of DEAs as actuators embedded into wearable devices such as high driving voltage and low output force compare to the motor based actuator. 
  • 3.9K
  • 01 Nov 2020
Topic Review
Laser Forming Process
Laser forming is an emerging manufacturing process capable of producing either uncomplicated and complicated shapes by employing a concentrated heating source. The heat source movement creates local softening, and a plastic strain will be induced during the rise of temperature and the subsequent cooling. This contactless forming process may be used for the simple bending of sheets and tubes or fabrication of doubly-curved parts. Different studies have been carried out over recent years to understand the mechanism of forming and predicting the bending angle. The analysis of process parameters and search for optimized manufacturing conditions are among the most discussed topics. This review describes the main recent findings in the laser forming of single and multilayer sheets, composite and fiber-metal laminate plates, force assisted laser bending, tube bending by laser beam, the optimization technique implemented for process parameters selection and control, doubly-curved parts, and the analytical solutions in laser bending. The main focus is set to the researches published since 2015.
  • 3.9K
  • 21 Nov 2020
Topic Review
Natural Jute Fibers
The increasing trend of the use of synthetic products may result in an increased level of pollution affecting both the environment and living organisms. Therefore, from the sustainability point of view, natural, renewable and biodegradable materials are urgently needed to replace environmentally harmful synthetic materials. Jute, one of the natural fibers, plays a vital role in developing composite materials that showed potential in a variety of applications such as household, automotive and medical appliances.
  • 3.9K
  • 06 Apr 2022
Topic Review
Stereolithography
Being the earliest form of Additive manufacturing, Stereolithography (SLA) fabricates 3D objects by selectively solidifying the liquid resin through photopolymerization reaction. The ability to fabricate objects with high accuracy as well as a wide variety of materials brings much attention to stereolithography. Since its invention in 1980s, SLA underwent four generations of major technological innovation over the past 40 years. These innovations have thus result in a diversifies range of stereolithography systems with dramatically improved resolution, throughput, and materials selection for creating complex 3D objects and devices. In this paper, we review the four generations stereolithography processes, which are scanning, projection, continuous and volumetric stereolithography. For each generation, representative stereolithography system configurations are also discussed in detail. In addition, other derivative technologies, such as scanning-projection, multi-material, and magnetically assisted stereolithography processes, are also included in this review.
  • 3.8K
  • 16 Sep 2020
Topic Review Peer Reviewed
Elevator Technology Improvements: A Snapshot
Efficient vertical transportation is vital to a skyscraper’s functional operation and the convenience and satisfaction of its tenants. This review complements the author’s previously published research by updating the readers on innovative hardware and software-based solutions. It lays out, organizes, and combines extensive and scattered material on numerous aspects of elevator design in a straightforward and non-technical narrative. Rope-less elevators, the MULTI, artificial intelligence (AI), the Internet of Things (IoT), and extended reality technologies are some of the developments and advancements this article examines. The analysis also contextualizes current technical developments by reviewing how they are used in significant projects such as the One World Trade Center in New York City. Lastly, the paper examines innovative technologies, such as holographic elevator buttons and ultraviolet rays that disinfect elevators, in response to the COVID-19 pandemic.
  • 3.8K
  • 04 May 2023
Topic Review Peer Reviewed
Metal Nanoparticles as Free-Floating Electrodes
Colloidal metal nanoparticles in an electrolyte environment are not only electrically charged but also electrochemically active objects. They have the typical character of metal electrodes with ongoing charge transfer processes on the metal/liquid interface. This picture is valid for the equilibrium state and also during the formation, growth, aggregation or dissolution of nanoparticles. This behavior can be understood in analogy to macroscopic mixed-electrode systems with a free-floating potential, which is determined by the competition between anodic and cathodic partial processes. In contrast to macroscopic electrodes, the small size of nanoparticles is responsible for significant effects of low numbers of elementary charges and for self-polarization effects as they are known from molecular systems, for example. The electrical properties of nanoparticles can be estimated by basic electrochemical equations. Reconsidering these fundamentals, the assembly behavior, the formation of nonspherical assemblies of nanoparticles and the growth and the corrosion behavior of metal nanoparticles, as well as the formation of core/shell particles, branched structures and particle networks, can be understood. The consequences of electrochemical behavior, charging and self-polarization for particle growth, shape formation and particle/particle interaction are discussed.
  • 3.7K
  • 13 Apr 2022
Topic Review
Supercritical Carbon Dioxide Flow and Heat Transfer Characteristics
Supercritical carbon dioxide (SCO2) is widely used in many fields of energy and power engineering, such as nuclear reactors, solar thermal power generation systems, and refrigeration systems. In practical applications, SCO2 undergoes a cooling process significantly when it is cooled near the pseudo–critical point.
  • 3.6K
  • 08 Dec 2022
Topic Review
Mechanical Durability of PEM Fuel Cells
The mechanical durability of PEM fuel cells is a significant barrier to commercializing these systems for stationary and transportation power applications. The performance of a PEM fuel cell or stack is affected pointedly by the degradation of its components materials. Performance degradation is unavoidable, but the degradation rate can be minimized by comprehensively understanding degradation and failure mechanisms. Furthermore, the degradation processes of the different components are often interconnected in fuel cells. Therefore, the degradation phenomena of each fuel cell component must be separated, analyzed, and systematically understood to develop novel component materials and build novel cells/stacks that mitigate insufficient fuel cell mechanical durability.
  • 3.5K
  • 01 Aug 2022
Topic Review
Hot Corrosion in Gas Turbine Blades
Hot corrosion is due to the severe deterioration of metals due to sulfidation or oxidation reactions of the deposits in the form of liquid or semi-liquid at an operating temperature. In a gas turbine, there are corrosive particles in the environment and lower-grade fuel—for example, chlorine, sodium, sulfur, and vanadium.
  • 3.5K
  • 22 Sep 2022
  • Page
  • of
  • 18
Academic Video Service