1000/1000
Hot
Most Recent
This entry presents an overview on how mechanics in Greece was linked to geometry. In ancient Greece, mechanics was about lifting heavy bodies, and mathematics almost coincided with geometry. Mathematics interconnected with mechanics at least from the 5th century BCE and became dominant in the Hellenistic period. The contributions by thinkers such as Aristotle, Euclid, and Archytas on fundamental problems such as that of the lever are sketched. This entry can be the starting point for a deeper investigation on the connections of the two disciplines through the ages until our present day.
[.] as the mathematician investigates abstractions (for before beginning his investigation he strips off all the sensible qualities, e.g., weight and lightness, hardness and its contrary, and also heat and cold and the other sensible contrarieties, and leaves only the quantitative and continuous, sometimes in one, sometimes in two, sometimes in three dimensions, and the attributes of these qua [i.e., inasmuch] quantitative and continuous, and does not consider them in any other respect, and examines the relative positions of some and the attributes of these, and the commensurabilities and incommensurabilities of others, and the ratios of others; but yet we say there is one and the same science of all these things—geometry), the same is true with regard to being.[3] (11, 3. 27)
Similar evidence is supplied by the more physical of the branches of mathematics, such as optics, harmonics, and astronomy. These are to some extent the converse of geometry. While geometry investigates physical lines but not qua physical, optics investigates mathematical lines, but qua physical, not qua mathematical.[4] (II, 194a, 7 ff.)
The same account may be given of harmonics and optics; for neither considers its objects qua sight or qua voice, but qua lines and numbers; but the latter are attributes proper to the former. And mechanics too proceeds in the same way.[3] (M, 3, 1078a)
He was the first to bring mechanics to a system by applying mathematical principles; he also first employed mechanical motion in a geometrical construction, namely, when he tried, by means of a section of a half-cylinder, to find two mean proportionals in order to duplicate the cube. In geometry, too, he was the first to discover the cube, as Plato says in the Republic.[5] (volume 2, book 8, 83, pp. 395–396)