Topic Review
Chitosan in Fish Biotechnology
Chitosan is increasingly used for safe drug and nucleic acid delivery due to well-known properties such as bioadhesion, low toxicity, biodegradability and biocompatibility. Furthermore, chitosan derivatization can be easily performed to improve solubility and stability of chitosan-nucleic acid polyplexes, and enhance efficient target cell drug delivery, cell uptake, intracellular endosomal escape, unpacking and nuclear import of expression plasmids. This review focus attention on recent advances in chitosan-mediated gene delivery for fish biotechnology applications such as fish vaccination against bacterial and viral infection, control of gonadal development, and gene overexpression and silencing for overcoming metabolic limitations such as dependence on protein-rich diets and low glucose tolerance of farmed fish.
  • 2.4K
  • 27 Oct 2020
Topic Review
NIAS in Plastic Food Packaging
Several food contact materials (FCMs) contain non-intentionally added substances (NIAS), and most of the substances that migrate from plastic food packaging are unknown. Food packaging can contain NIAS as a result of the interactions between different substances in the packaging materials, between food content and substances (for example, additives) in FCM, from degradation processes and mainly from the impurities present in the raw materials used for FCM production. (EU) nº 10/2011 defines that “non-intentionally added substance means an impurity in the substances used or a reaction intermediate formed during the production process or a decomposition or reaction product”. Most NIAS are regularly detected when using high sensitivity analytical techniques, although the chemical structure of unknown compounds is often difficult to establish by conventional tools.
  • 2.4K
  • 01 Jul 2021
Topic Review
PET-RAFT
Photoinduced Electron/Energy Transfer Reversible Addition-Fragmentation Chain-Transfer (PET-RAFT) polymerization, proposed for the first time in 2014, is based on an alternative activation of the thiocarbonylthio compounds through photoredox catalysts (PCs). This last presents significant advantages compared to other photochemical techniques in terms of applicability, cost, and sustainability. 
  • 2.4K
  • 26 May 2021
Topic Review
Polarization Holography
Polarization holography has the unique capacity to record and retrieve the amplitude, phase, and polarization of light simultaneously in a polarization-sensitive recording material and has attracted widespread attention. Polarization holography is a noteworthy technology with potential applications in the fields of high-capacity data storage, polarization-controlled optical elements, and other related fields.
  • 2.3K
  • 23 Jan 2021
Topic Review
Self-healing Polymeric Materials
The mechanism of self-healing, which includes the extrinsic and intrinsic approaches for each of the applications, is examined. The extrinsic mechanism involves the introduction of external healing agents such as microcapsules and vascular networks into the system. Meanwhile, the intrinsic mechanism refers to the inherent reversibility of the molecular interaction of the polymer matrix, which is triggered by the external stimuli. Both self-healing mechanisms have shown a significant impact on the cracked properties of the damaged sites.
  • 2.3K
  • 21 Apr 2021
Topic Review
Constituents of a Free Radical UV Curing System
The essential constituents of a UV curing system are a resin, which is an oligomer whose backbone confers the properties to the final polymer; a monomer, which acts as a cross-linking agent and adjusts the viscosity of the mixture to an acceptable level for application; and a photoinitiator, which is responsible for the light absorbance and governs the curing depth and rate.
  • 2.3K
  • 21 Jul 2022
Topic Review
Skin Tissue Engineering Application
Skin tissue engineering has made remarkable progress in wound healing treatment with the advent of newer fabrication strategies using natural/synthetic polymers and stem cells. Currently, stem cells and biomaterials are popularly used in the skin tissue engineering approach in different wound healing treatments. In skin tissue engineering application, stem cell facilitates in the regeneration of disintegrated tissue. Whereas, biomaterials serve as a platform to improve the engraftment of implanted cells and facilitate the function of exogenous cells by mimicking the tissue microenvironment. Hence, the combination and synergistic effect of biomaterials and stem cells have the potential to broaden the application of skin tissue engineering in wound healing treatment therapies.  
  • 2.3K
  • 19 May 2021
Topic Review
Fundamental Concepts of Hydrogels
Hydrogels are three-dimensional crosslinked porous networks and can be synthesized from natural polymers, synthetic polymers, polymerizable synthetic monomers, and combination of natural and synthetic polymers. Synthesis of hydrogels involves physical, chemical and hybrid bonding. The bonding is formed via different routes such as solution casting, solution mixing, bulk polymerization, free radical mechanism, radiation method, and interpenetrating network formation. The synthesized hydrogels have significant properties such as mechanical strength, flexibility, biocompatibility, biodegradability, swellability, and stimuli sensitivity. Furthermore, owing to the smart and aqueous medium, robust mechanical strength, adhesiveness, stretchability, strain sensitivity, and self-healability, hydrogels can be potentially used in biomedical, electrochemical, sensors, contact lens, and soft robotic applications.
  • 2.3K
  • 03 Dec 2020
Topic Review
Natural Leaf Fiber
The use of natural fibres has rapidly increased due to their high availability, low density, and renewable capability over synthetic fibre. Natural leaf fibres are easy to extract from the plant (retting process is easy), which offers high stiffness, less energy consumption, less health risk, environment friendly, and better insulation property than the synthetic fibre-based composite. Natural leaf fibre composites have low machining wear with low cost and excellent performance in engineering applications, and hence established as superior reinforcing materials compared to other plant fibres. 
  • 2.3K
  • 26 Apr 2021
Topic Review
Polylactic Acid and Its Synthesis
Biomaterials are natural or engineered substances that interact with components of living systems that can be exploited for a medical purpose, either as therapeutic or diagnostic agents.  Poly-(lactic Acid) (PLA) is a compostable polymer derived from corn sugar, potato, and sugar cane whose promising physicochemical properties are comparable to those of petroleum-based polymers, such as polyethylene, polypropylene, polystyrene, polycarbonate, and polyethylene terephthalate. PLA is a semicrystalline polymer that hydrolyses in physiological media, yielding lactic acid, a non-toxic component that is eliminated via the Krebs cycle as water and carbon dioxide. The biocompatibility, biodegradability, and resorbability characteristics of PLA have promoted its use in the biomedical field for a wide range of applications (suture threads, bone fixation screws, drug delivery systems, etc.), offering an alternative to conventional biocompatible materials such as metals and ceramics.
  • 2.3K
  • 30 Sep 2022
Topic Review
Catalysts for Synthesis of Ethylene-Propylene-Diene Rubbers
Ethylene-propylene-diene rubbers (EPDM) are one of the most important polyolefin materials widely commercialized and used in various industries in recent years. The production of EPDM is based solely on catalytic coordination polymerization processes. The development of new catalysts and processes for the synthesis of EPDM has expanded the range of products and their manufacturing in terms of energy efficiency, processability, and environmental safety.
  • 2.2K
  • 13 Sep 2022
Topic Review
Polymeric Surfactants
Polymeric surfactants are surfactant molecules that have a polymeric backbone, which can be made up of various repeating units. These surfactants have both hydrophilic and hydrophobic segments, which allows them to interact with both water and oil. Polymeric surfactants are used in a variety of industrial applications, such as in the production of paints, adhesives, and coatings. They can improve the stability and performance of these products by reducing the surface tension and promoting the dispersion of pigments and fillers. In addition, polymeric surfactants are also used in the formulation of personal care products, such as shampoos, conditioners, and body washes. They can help to improve the texture and feel of these products, as well as enhance their cleaning and conditioning properties. One of the key advantages of polymeric surfactants is their ability to form stable micelles in solution. These micelles are aggregates of surfactant molecules that form a spherical structure with the hydrophobic segments on the inside and the hydrophilic segments on the outside. This allows for efficient emulsification of oil and water, which is important in a variety of industrial processes. Polymeric surfactants are a versatile class of surfactants that offer several unique properties and advantages in various applications. They are commonly used as emulsifiers, stabilizers, and thickening agents, and have potential applications in areas such as agriculture, oil and gas, and papermaking. Polymeric surfactants are a diverse class of surfactants that can be classified based on their composition, molecular weight, and degree of polymerization. They offer a range of unique properties and advantages in various applications, including cosmetics, food and beverage products, pharmaceuticals, and agriculture.
  • 2.2K
  • 24 Mar 2023
Topic Review
Sodium Alginate
Alginian sodu (Na-Alg) jest rozpuszczalnym w wodzie, obojętnym i liniowym polisacharydem. Jest pochodną kwasu alginowego, który zawiera kwasy 1,4-β-d-mannuronowy (M) i α-l-guluronowy (G) i ma wzór chemiczny (NaC6H7O6). Wykazuje właściwości rozpuszczalne w wodzie, nietoksyczne, biokompatybilne, biodegradowalne i nieimmunogenne. Był używany do różnych zastosowań biomedycznych, wśród których najbardziej obiecujące są dostarczanie leków, dostarczanie genów, opatrywanie ran i ich gojenie.
  • 2.2K
  • 02 Feb 2021
Topic Review
Laser Transmission Welding of Polymers
Laser Transmission Welding of Polymers is a joining technique frequently selected by contemporary researchers to weld two thermoplastic surfaces.
  • 2.2K
  • 30 Mar 2021
Topic Review
Conducting Polymers
Conducting polymers are an important class of functional materials that has been widely applied to fabricate electrochemical biosensors, because of their interesting and tunable chemical, electrical, and structural properties. Conducting polymers can also be designed through chemical grafting of functional groups, nanostructured, or associated with other functional materials such as nanoparticles to provide tremendous improvements in sensitivity, selectivity, stability and reproducibility of the biosensor’s response to a variety of bioanalytes. Such biosensors are expected to play a growing and significant role in delivering the diagnostic information and therapy monitoring since they have advantages including their low cost and low detection limit.
  • 2.2K
  • 12 Oct 2020
Topic Review
Poly(Ethylene Terephthalate) Microplastics
The high PET production volume and the waste mismanagement of PET litter make it one of the most polluting plastic material. Its diffusion in marine litter is widely assessed according to public opinion and documented in the literature. The major sources of PET microplastics in the marine environment are bottles and fibers. The role of PET micro/nanoplastics of vector of toxic chemicals, their fate and the negative effects on the environment and human health is still under discussion.
  • 2.2K
  • 27 Apr 2021
Topic Review
Supercapacitor
Supercapacitors are electrical devices for fast storage and release of electric energy utilizing charge accumulation in the electrochemical double layer. In terms of volumetric and gravimetric capacities they exceed conventional dielectric and electrolytic capacitors by several orders of magnitude. However, the low energy density of supercapacitors has seriously limited their wider application in many fields. Increase of energy density highly depends on development of a new generation of advanced electrode materials for supercapacitors.
  • 2.1K
  • 26 Oct 2020
Topic Review
Intrinsic Self-Healing Polymers
Self-healing polymeric materials have been widely investigated because they can heal the damages spontaneously and thereby prolong their service lifetime. Many ingenious synthetic procedures have been developed for fabricating self-healing polymers with high performance.
  • 2.1K
  • 20 Sep 2022
Topic Review
Pyrolysis of Polystyrene Waste
The manufacturing of polystyrene around the globe has escalated in the past years due to its huge applications in various areas. The perpetual market needs of polystyrene led the polystyrene wastes accretion in the landfill causing environmental deterioration. The soaring need for polystyrene also led to the exhaustion of petroleum, a non-renewable energy source, as polystyrene is a petroleum-derived product.
  • 2.1K
  • 28 Sep 2021
Topic Review
Functional Polymer Materials for Energy Applications
This entry provides insight into the recent energy applications of polymers.
  • 2.1K
  • 15 Dec 2021
  • Page
  • of
  • 23
ScholarVision Creations