You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
The Importance of Bifidobacterial Colonisation
There are several parallel mechanisms by which early life microbiome acquisition may proceed, including early exposure to maternal vaginal and fecal microbiota, transmission of skin associated microbes, and ingestion of microorganisms present in breast milk. The crucial role of vertical transmission from the maternal microbial reservoir during vaginal delivery is supported by the shared microbial strains observed among mothers and their babies and the distinctly different gut microbiome composition of caesarean-section born infants. The healthy infant colon is often dominated by members of the keystone genus Bifidobacterium that have evolved complex genetic pathways to metabolize different glycans present in human milk. In exchange for these host-derived nutrients, bifidobacteria's saccharolytic activity results in an anaerobic and acidic gut environment that is protective against enteropathogenic infection. Interference with early-life microbiota acquisition and development could result in adverse health outcomes. Compromised microbiota development, often characterized by decreased abundance of Bifidobacterium species has been reported in infants delivered prematurely, delivered by caesarean section, early life antibiotic exposure and in the case of early life allergies. Various microbiome modulation strategies such as probiotic, prebiotics, synbiotics and postbiotics have been developed that are able to generate a bifidogenic shift and help to restore the microbiota development.
  • 1.1K
  • 09 Jan 2021
Topic Review
Human and Animal Brucellosis in Nigeria
Brucellosis caused by Brucella spp. is transmitted by direct or indirect contact with infected animals or their secretions and through the consumption of infected animal meat and unpasteurized milk/milk products. Brucellosis is classified as one of the top neglected zoonosis by the World Health Organization (WHO), and despite this, it does not attract the appropriate attention it requires from both the Federal and State ministries of health in Nigeria. 15.8% (7178/45,363) seroprevalence of brucellosis was recorded in northern Nigeria as against 8.7% (1902/21,740) in the southern part. Brucella abortus, B. melitensis, B. suis, and B. canis were reported in 27 of the 36 states.
  • 1.1K
  • 12 Aug 2022
Topic Review
Probiotic Bacteria
Probiotic bacteria are widely accepted as therapeutic agents against inflammatory bowel diseases for their immunostimulating effects. 
  • 1.1K
  • 04 Aug 2021
Topic Review
Francisella Tularensis Virulence
Regulation of gene transcription is the initial step in the complex process that controls gene expression within bacteria. Transcriptional control involves the joint effort of RNA polymerases and numerous other regulatory factors. Whether global or local, positive or negative, regulators play an essential role in the bacterial cell. For instance, some regulators specifically modify the transcription of virulence genes, thereby being indispensable to pathogenic bacteria. Here, we provide a comprehensive overview of important transcription factors and DNA-binding proteins described for the virulent bacterium Francisella tularensis, the causative agent of tularemia. This is an unexplored research area, and the poorly described networks of transcription factors merit additional experimental studies to help elucidate the molecular mechanisms of pathogenesis in this bacterium, and how they contribute to disease.
  • 1.1K
  • 24 Nov 2020
Topic Review
Starvation-Induced Autophagy in Saccharomyces cerevisiae in Metabolomics Perspectives
The application of metabolomics has extended the scope of autophagy and provided newer intervention targets against cancer as well as neurodegenerative diseases in which autophagy is implicated. 
  • 1.1K
  • 02 Dec 2021
Topic Review
Gut Microbiota on Liver Diseases
The gut–liver axis plays important roles in both the maintenance of a healthy liver and the pathogenesis of liver diseases, where the gut microbiota acts as a major determinant of this relationship. Gut bacteria-derived metabolites and cellular components are key molecules that affect the function of the liver and modulate the pathology of liver diseases. Accumulating evidence showed that gut microbiota produces a myriad of molecules, including lipopolysaccharide, lipoteichoic acid, peptidoglycan, and DNA, as well as short-chain fatty acids, bile acids, trimethylamine, and indole derivatives. The translocation of these components to the liver exerts beneficial or pathogenic effects by interacting with liver immune cells. This is a bidirectional relationship.
  • 1.1K
  • 26 Dec 2020
Topic Review
Borreliaceae Diagnostics
The acceleration of climate change has been associated with an alarming increase in the prevalence and geographic range of tick-borne diseases (TBD), many of which have severe and long-lasting effects—particularly when treatment is delayed principally due to inadequate diagnostics and lack of physician suspicion. Moreover, there is a paucity of treatment options for many TBDs that are complicated by diagnostic limitations for correctly identifying the offending pathogens. 
  • 1.1K
  • 30 Sep 2022
Topic Review
Measles Incidence and Eradication
Measles is an RNA virus infectious disease mainly seen in children. Despite the availability of an effective vaccine against measles, it remains a health issue in children. Although it is a self-limiting disease, it becomes severe in undernourished and immune-compromised individuals. Measles infection is associated with secondary infections by opportunistic bacteria due to the immunosuppressive effects of the measles virus. 
  • 1.1K
  • 01 Sep 2022
Topic Review
Entomopathogenic Microorganisms in Animals Protection
The control of ectoparasites requests the development of novel strategies and, among them, the use of entomopathogenic microorganisms appears as a promising tool to achieve an eco-friendly approach. 
  • 1.1K
  • 29 Jun 2021
Topic Review
Escherichia coli O157
Escherichia coli O157:H7 (O157) are noninvasive and weak biofilm producers; however, a subset of O157 are exceptions. O157 ATCC 43895 forms biofilms and invades epithelial cells. Tn5 mutagenesis identified mutation insertions that map within the curli csgB fimbriae locus to be responsible for both phenotypes. Screening of O157 strains for biofilm formation and cell invasion identify a bovine and a clinical isolate with those characteristics. A single base pair A to T transversion, intergenic to the curli divergent operons csgDEFG and csgBAC, is present only in biofilm-producing and invasive strains. Using site-directed mutagenesis, this single base change was introduced into two curli-negative/noninvasive O157 strains and modified strains to form biofilms, produce curli, and gain invasive capability. Transmission electron microscopy (EM) and immuno-EM confirmed curli fibers. EM of bovine epithelial cells (MAC-T) co-cultured with curli-expressing O157 show intracellular bacteria. The role of curli in O157 persistence in cattle was examined by challenging cattle with curli-positive and -negative O157 and comparing carriage. The duration of bovine colonization with the O157 curli-negative mutant was shorter than its curli-positive isogenic parent. These findings definitively demonstrate that a single base pair stably confers biofilm formation, epithelial cell invasion, and persistence in cattle. 
  • 1.1K
  • 30 Oct 2020
Topic Review
Skin Microbiota
Many relatively common chronic inflammatory skin diseases manifest on the face (seborrheic dermatitis, rosacea, acne, perioral/periorificial dermatitis, periocular dermatitis, etc.), thereby significantly imparing patient appearance and quality of life. Given the as yet unexplained pathogenesis and numerous factors involved, these diseases often present therapeutic challenges. Changes in human skin microbiota composition and/or functionality are believed to trigger immune dysregulation and, consequently, an inflammatory response, thereby playing a potentially significant role in the clinical manifestations and treatment of these diseases. Although cultivation methods have traditionally been used in studies of bacterial microbiome species, a large number of bacterial strains cannot be grown in the laboratory. Since standard culture-dependent methods detect fewer than 1% of all bacterial species, a metagenomic approach could be used to detect bacteria that cannot be cultivated. Studies on the possible association between changes in the microbiome and their association with skin diseases have improved understanding of disease development, diagnostics and therapeutics. Identification of the bacterial markers associated with particular inflammatory skin diseases would significantly accelerate the diagnostics and reduce treatment costs. Microbiota research and determination could facilitate the identification of potential causes of skin diseases that cannot be detected by simpler methods, thereby contributing to the design and development more effective therapies.
  • 1.1K
  • 01 Nov 2021
Topic Review
Distribution of eDNA in Different Environments
In nature, DNA is ubiquitous, existing not only inside but also outside of the cells of organisms. Intracellular DNA (iDNA) plays an essential role in different stages of biological growth, and it is defined as the carrier of genetic information. In addition, extracellular DNA (eDNA) is not enclosed in living cells, accounting for a large proportion of total DNA in the environment. Both the lysis-dependent and lysis-independent pathways are involved in eDNA release, and the released DNA has diverse environmental functions.
  • 1.1K
  • 18 Nov 2022
Topic Review
Recognition and Regulation of Pathogenic Fungi
The interaction between pathogenic fungi and plants is a complex process. From the perspective of pathogenic fungi, pathogenic fungi are involved in the regulation of pathogenicity by surface signal recognition proteins, MAPK signaling pathways, transcription factors, and pathogenic factors in the process of infecting plants.
  • 1.1K
  • 13 May 2022
Topic Review
Gut Microbiota in Primary Immunodeficiencies
Inborn errors of immunity (IEI) are a group of disorders that are mostly caused by genetic mutations affecting immune host defense and immune regulation. Although IEI present with a wide spectrum of clinical features, in about one third of them various degrees of gastrointestinal (GI) involvement have been described and for some IEI the GI manifestations represent the main and peculiar clinical feature. The microbiome plays critical roles in the education and function of the host’s innate and adaptive immune system, and imbalances in microbiota-immunity interactions can contribute to intestinal pathogenesis. Microbial dysbiosis combined to the impairment of immunosurveillance and immune dysfunction in IEI, may favor mucosal permeability and lead to inflammation. Here we review how immune homeostasis between commensals and the host is established in the gut, and how these mechanisms can be disrupted in the context of primary immunodeficiencies. Additionally, we highlight key aspects of the first studies on gut microbiome in patients affected by IEI and discuss how gut microbiome could be harnessed as a therapeutic approach in these diseases.
  • 1.1K
  • 16 Feb 2021
Topic Review
Managing Oral Health in Context of Antimicrobial Resistance
The oral microbiome plays a major role in shaping oral health/disease state; thus, a main challenge for dental practitioners is to preserve or restore a balanced oral microbiome. Nonetheless, when pathogenic microorganisms install in the oral cavity and are incorporated into the oral biofilm, oral infections, such as gingivitis, dental caries, periodontitis, and peri-implantitis, can arise. Several prophylactic and treatment approaches are available nowadays, but most of them have been antibiotic-based. Given the actual context of antimicrobial resistance (AMR), antibiotic stewardship in dentistry would be a beneficial approach to optimize and avoid inappropriate or even unnecessary antibiotic use, representing a step towards precision medicine. 
  • 1.1K
  • 23 Dec 2022
Topic Review
General Overview of Klebsiella pneumonia
The opportunistic pathogen Klebsiella pneumoniae (K. pneumoniae) can colonize mucosal surfaces and spread from mucosae to other tissues, causing fatal infections. Medical equipment and the healthcare setting can become colonized by Klebsiella species, which are widely distributed in nature and can be found in water, soil, and animals. Moreover, a substantial number of community-acquired illnesses are also caused by this organism worldwide. These infections are characterized by a high rate of morbidity and mortality as well as the capacity to spread metastatically. Hypervirulent Klebsiella strains are thought to be connected to these infections. Four components are critical to this bacterium’s pathogenicity—the capsule, lipopolysaccharide, fimbriae, and siderophores. 
  • 1.1K
  • 01 Feb 2024
Topic Review
Membrane Vesicles Derived from Gut Microbiota
Multidrug-resistant (MDR) superbugs can breach the blood–brain barrier (BBB), leading to a continuous barrage of pro-inflammatory modulators and induction of severe infection-related pathologies, including meningitis and brain abscess. Both broad-spectrum or species-specific antibiotics (β-lactamase inhibitors, polymyxins, vancomycin, meropenem, plazomicin, and sarecycline) and biocompatible poly (lactic-co-glycolic acid) (PLGA) nanoparticles have been used to treat these infections. However, new therapeutic platforms with a broad impact that do not exert off-target deleterious effects are needed. Membrane vesicles or extracellular vesicles (EVs) are lipid bilayer-enclosed particles with therapeutic potential owing to their ability to circumvent BBB constraints. Bacteria-derived EVs (bEVs) from gut microbiota are efficient transporters that can penetrate the central nervous system. In fact, bEVs can be remodeled via surface modification and CRISPR/Cas editing and, thus, represent a novel platform for conferring protection against infections breaching the BBB.
  • 1.1K
  • 09 Dec 2022
Topic Review
The Influence of Specific Microbial Species on Diabetes
Diabetes mellitus (DM) is a metabolic disorder with an alarming incidence rate and a considerable burden on the patient’s life and health care providers. An increase in blood glucose level and insulin resistance characterizes it. Internal and external factors such as urbanization, obesity, and genetic mutations could increase the risk of DM. Microbes in the gut influence overall health through immunity and nutrition. More studies have been conducted to evaluate and estimate the role of the gut microbiome in diabetes development, progression, and management. 
  • 1.1K
  • 15 May 2023
Topic Review
Essential Oil-Based Nanoparticles as Antimicrobial Agents in Food
The use of essential oils (EO) loaded with nanoparticles is the most promising alternative to increase food quality and safety. Their association with different nanosystems allows novel developments in the micronutrition, health promotion, and pathogen control fields, preventing the aggravation of bacterial microevolution and combating antibiotic resistance. Benefits to the environment are also provided, as they are biodegradable and biocompatible. 
  • 1.1K
  • 26 Sep 2022
Topic Review
Ibrexafungerp in Development for Treatment of Mold Infections
Ibrexafungerp, an orally bioavailable glucan synthase inhibitor, is the first in a new class of triterpenoid antifungals and shares a similar target to the well-established echinocandins. Ibrexafungerp has a very favorable pharmacokinetic profile for the treatment of fungal infections with excellent tissue penetration in organs targeted by molds, such as the lungs, liver, and skin. Ibrexafungerp has demonstrated in vitro activity against Aspergillus spp. as well as efficacy alone and in combination with other antifungals in in animal models of invasive aspergillosis and mucormycosis. Furthermore, ibrexafungerp is approved for use in the USA for the treatment of women with vulvovaginal candidiasis and for the reduction in the incidence of recurrent vulvovaginal candidiasis.
  • 1.1K
  • 10 Apr 2023
  • Page
  • of
  • 51
Academic Video Service