You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Protein Glutathionylation and Glutaredoxin in Neurodegenerative Diseases
The brain is highly sensitive to oxidative stress due to its high oxygen consumption, abundance of unsaturated fatty acids which are prone to oxidation, and low antioxidant levels. It is a metabolically active and a high energy demanding organ that relies heavily on mitochondria for its energy needs. Majority of oxygen consumed by mitochondria during oxidative phosphorylation is coupled to ATP synthesis while ~4% contributes to the generation of superoxides which are further metabolized to reactive oxygen species (ROS). ROS modify proteins causing functional and structural damage to biomolecules. Prolonged exposure to reactive oxygen species (ROS) also damages DNA, mitochondrial membranes, and lipids, impairing its metabolic functions including synthesis of ATP, fatty acid oxidation and metabolism of essential biomolecules.
  • 1.8K
  • 16 Dec 2022
Topic Review
Beta2-Microglobulin
Beta2-microglobulin (B2M) is a key component of major histocompatibility complex class I molecules, which aid cytotoxic T-lymphocyte (CTL) immune response. B2M also plays an important role in innate defense and does not only function as an adjuvant for CTL response. 
  • 1.8K
  • 26 Jul 2021
Topic Review
Non-Flavonoid Polyphenols against Human Herpesviruses
Herpesviruses are one of the most contagious DNA viruses that threaten human health, causing severe diseases, including, but not limited to, certain types of cancer and neurological complications. The overuse and misuse of anti-herpesvirus drugs are key factors leading to drug resistance.
  • 1.8K
  • 21 Nov 2022
Topic Review
Monosodium Glutamate-Induced Male Reproductive Dysfunction
Reproductive dysfunction is often characterized by malfunction of the reproductive tissues, which may lead to disruption of the synergistic rhythm that should bring about a progression of sexual events and the conception of new life. This may therefore result in the sexual dysfunction and infertility that can be seen in couples having prolonged biological difficulty in reproducing their offspring after having unrestricted sexual intercourse for at least twelve months. Several factors have been implicated in the cause and progression of reproductive dysfunction, including poor nutrition, drug side effects, disease states, and toxicant ingestion. A well-known food additive that has been found to be potent at initiating reproductive anomalies in males is monosodium glutamate (MSG). 
  • 1.8K
  • 23 May 2022
Topic Review
Quadruplex Structures: Cancer Therapeutic Targets
Non-canonical, four-stranded nucleic acids secondary structures are present within regulatory regions in the human genome and transcriptome. To date, these quadruplex structures include both DNA and RNA G-quadruplexes, formed in guanine-rich sequences, and i-Motifs, found in cytosine-rich sequences, as their counterparts. Quadruplexes have been extensively associated with cancer, playing an important role in telomere maintenance and control of genetic expression of several oncogenes and tumor suppressors. Therefore, quadruplex structures are considered attractive molecular targets for cancer therapeutics with novel mechanisms of action.
  • 1.8K
  • 11 Dec 2020
Topic Review
Vascular Endothelial Glycocalyx
Vascular endothelial cells are a monolayer of cells that comprise the innermost layer of cells in the vascular system, including arteries, veins, and capillaries, and serve a barrier function for the blood vessels surrounding all organs and in direct contact with the blood flowing through the vascular lumen.
  • 1.8K
  • 30 Dec 2020
Topic Review
O-GlcNAcylation
O-GlcNAcylation is a posttranslational modification that occurs at serine and threonine residues of protein substrates by the addition of O-linked β-d-N-acetylglucosamine (GlcNAc) moiety. Two enzymes are involved in this modification: O-GlcNac transferase (OGT), which attaches the GlcNAc residue to the protein substrate, and O-GlcNAcase (OGA), which removes it. This biological balance is important for many biological processes, such as protein expression, cell apoptosis, and regulation of enzyme activity.
  • 1.8K
  • 04 Mar 2021
Topic Review
Ryanodine Receptor
The ryanodine receptor (RyR) is a Ca2+ release channel in the sarcoplasmic reticulum of skeletal and cardiac muscles and plays a key role in excitation–contraction coupling. The activity of the RyR is regulated by the changes in the level of many intracellular factors, such as divalent cations (Ca2+ and Mg2+), nucleotides, associated proteins, and reactive oxygen species. Since these intracellular factors change depending on the condition of the muscle, e.g., exercise, fatigue, or disease states, the RyR channel activity will be altered accordingly.
  • 1.8K
  • 20 Oct 2021
Topic Review
High-Value Bioactive Primary Metabolites of Microalgae
Microalgae is an aquatic microorganism with a plethora of diverse bioactive compounds including phenolics, carotenoids, vitamin B12 and peptides. Microalgal bioactive compounds have been shown to possess positive health effects such as antihypertensive, anti-obesity, antioxidative, anticancer and cardiovascular protection.
  • 1.8K
  • 08 Jul 2023
Topic Review
Function and Components of Telomerase
Telomerase is the only known eukaryotic-specific enzyme with reverse transcriptase activity, which adds telomeric repeats at the ends of linear chromosomes. In this way, it counteracts telomere shortening and cellular replicative senescence. Telomerase consists of a catalytic protein subunit with reverse transcriptase activity (TERT), and an essential RNA component known as telomerase RNA component (TERC) that contains a template for the synthesis of telomeric DNA, as well as additional proteins (dyskerin, NHP2, NOP10 and GAR1 in vertebrates) that play crucial roles in its biogenesis, localization, and regulation. Beside its telomere-elongating activity, a growing number of studies have evidenced non-telomeric functions.
  • 1.8K
  • 20 Dec 2022
Topic Review
Astrocyte Pathology in Neurodevelopmental Disorders
The discovery in the last decade of unique astroglial features that include their role in synaptic plasticity and memory function has broadened and refurbished the conception of brain function in health and disease. Astrocytes are both necessary and sufficient for memory function, and contribute to the pathophysiology of cognitive and intellectual disability disorders such as Alzheimer’s disease, Fragile X syndrome (FXS), or Down syndrome (DS). We review some of the most relevant studies demonstrating that astrocytes are involved in the synaptic pathology of the two most common genetic forms of intellectual disability (FXS and DS).
  • 1.7K
  • 11 Dec 2020
Topic Review
BODIPY-Based Molecules for Biomedical Applications
BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) derivatives have attracted attention as probes in applications like imaging and sensing due to their unique properties like (1) strong absorption and emission in the visible and near-infrared regions of the electromagnetic spectrum, (2) strong fluorescence and (3) supreme photostability. They have also been employed in areas like photodynamic therapy. Over the last decade, BODIPY-based molecules have even emerged as candidates for cancer treatments. Cancer remains a significant health issue world-wide, necessitating a continuing search for novel therapeutic options. BODIPY is a flexible fluorophore with distinct photophysical characteristics and is a fascinating drug development platform. 
  • 1.7K
  • 08 Dec 2023
Topic Review
Replication Protein A
Replication protein A (RPA) is a heterotrimeric protein complex and the main single-stranded DNA (ssDNA)-binding protein in eukaryotes. RPA has key functions in most of the DNA-associated metabolic pathways and DNA damage signalling. Its high affinity for ssDNA helps to stabilise ssDNA structures and protect the DNA sequence from nuclease attacks. RPA consists of multiple DNA-binding domains which are oligonucleotide/oligosaccharide-binding (OB)-folds that are responsible for DNA binding and interactions with proteins. These RPA–ssDNA and RPA–protein interactions are crucial for DNA replication, DNA repair, DNA damage signalling, and the conservation of the genetic information of cells. Proteins such as ATR use RPA to locate to regions of DNA damage for DNA damage signalling.
  • 1.7K
  • 18 Feb 2024
Topic Review
AB5 Derivatives of Cyclotriphosphazene
AB5 compounds issued from the reactivity of hexachlorocyclotriphosphazene are relatively easy to obtain using two ways: either first the reaction of one chloride with one reagent, followed by the reaction of the five remaining Cl with another reagent, or first the reaction of five chlorides with one reagent, followed by the reaction of the single remaining Cl with another reagent. This particular property led to the use of such compounds as core for the synthesis of dendrons (dendritic wedges), using the five functions for growing the dendritic branches. The single function can be used for the synthesis of diverse types of dendrimers (onion peel, dumbbell-shape, Janus), for covalent or non-covalent grafting to solid surfaces, providing nanomaterials, for grafting a fluorophore, especially for studying biological mechanisms, or for self-associations to get micelles.
  • 1.7K
  • 04 Aug 2021
Topic Review
G Protein-Coupled Receptor with the Aging-Related Mechanisms
G protein-coupled receptors (GPCRs) represent one of the most functionally diverse classes of transmembrane proteins. GPCRs and their associated signaling systems have been linked to nearly every physiological, and also pathophysiological, process. G protein-coupled receptor 19 (GPR19), is a novel orphan GPCR that likely represents an important new target for novel remedial strategies for pathological disease conditions associated with aging-related cellular and tissue damage.
  • 1.7K
  • 16 Nov 2022
Topic Review
Extracellular Signal-Regulated Kinase
Extracellular signal-regulated kinase (ERK5) is an essential regulator of cancer progression, tumor relapse, and poor patient survival. Epithelial to mesenchymal transition (EMT) is a complex oncogenic process, which drives cell invasion, stemness, and metastases. Activators of ERK5, including mitogen-activated protein kinase 5 (MEK5), tumor necrosis factor α (TNF-α), and transforming growth factor-β (TGF-β), are known to induce EMT and metastases in breast, lung, colorectal, and other cancers. Several downstream targets of the ERK5 pathway, such as myocyte-specific enhancer factor 2c (MEF2C), activator protein-1 (AP-1), focal adhesion kinase (FAK), and c-Myc, play a critical role in the regulation of EMT transcription factors SNAIL, SLUG, and β-catenin. Moreover, ERK5 activation increases the release of extracellular matrix metalloproteinases (MMPs), facilitating breakdown of the extracellular matrix (ECM) and local tumor invasion. Targeting the ERK5 signaling pathway using small molecule inhibitors, microRNAs, and knockdown approaches decreases EMT, cell invasion, and metastases via several mechanisms.
  • 1.7K
  • 20 Feb 2021
Topic Review
Cytoskeleton
Cell migration is an essential process from embryogenesis to cell death. This is tightly regulated by numerous proteins that help in proper functioning of the cell. In diseases like cancer, this process is deregulated and helps in the dissemination of tumor cells from the primary site to secondary sites initiating the process of metastasis. For metastasis to be efficient, cytoskeletal components like actin, myosin, and intermediate filaments and their associated proteins should co-ordinate in an orderly fashion leading to the formation of many cellular protrusions-like lamellipodia and filopodia and invadopodia. Knowledge of this process is the key to control metastasis of cancer cells that leads to death in 90% of the patients. The focus of this review is giving an overall understanding of these process, concentrating on the changes in protein association and regulation and how the tumor cells use it to their advantage. Since the expression of cytoskeletal proteins can be directly related to the degree of malignancy, knowledge about these proteins will provide powerful tools to improve both cancer prognosis and treatment.
  • 1.7K
  • 20 Apr 2023
Topic Review
Antioxidant Potential and Beneficial Effects of Sea Cucumbers
Sea cucumbers are considered a luxury food item and used locally in traditional medication due to their impressive nutritional profile and curative effects. Sea cucumbers contain a wide range of bioactive compounds, namely phenolics, polysaccharides, proteins (collagen and peptides), carotenoids, and saponins, demonstrating strong antioxidant and other activities. In particular, phenolic compounds, mainly phenolic acids and flavonoids, are abundant in this marine invertebrate and exhibit antioxidant activity. Protein hydrolysates and peptides obtained from sea cucumbers exhibit antioxidant potential, mainly dependent on the amino acid compositions and sequences as well as molecular weight, displayed for those of ≤20 kDa. Moreover, the antioxidant activity of sea cucumber polysaccharides, including fucosylated chondroitin sulfate and fucan, is a combination of numerous factors and is mostly associated with molecular weight, degree of sulfation, and type of major sugars. However, the activity of these bioactive compounds typically depends on the sea cucumber species, harvesting location, food habit, body part, and processing methods employed.
  • 1.7K
  • 24 Aug 2022
Topic Review
Coenzyme Q10: Novel Formulations
Coenzyme Q10 (CoQ10) was first identified back in the fifties by two groups, Festenstein et al. (1955) and Crane et al. (1957). Its name was chosen due to the fact that it is an ubiquitous quinone present in all cells and that its chemical structure comprises a quinone group with a variable number of isoprenyl units, being ten in the case of humans. Its reduced form is known as ubiquinol and the oxidized one as ubiquinone. Both forms coexist and through sequential redox reactions serve to regenerate each other (Q cycle). 
  • 1.7K
  • 14 Jul 2021
Topic Review
Exosome Isolation Techniques
Extracellular vesicles (EVs) are lipid-binding vesicles secreted by cells into the extracellular space. The technologies and tools that have been used to purify exosomes from blood and other biofluids have evolved greatly, and this evolution has been driven by the need to accurately assess their biological function, but also and most importantly to decipher their molecular content, with a particular focus on tumor exosome biomarkers 
  • 1.7K
  • 20 Jul 2022
  • Page
  • of
  • 133
Academic Video Service