Topic Review
Microcellular Injection Moulding
Microcellular injection moulding (MuCell®) is a polymer processing technology that uses a supercritical fluid inert gas, CO2 or N2, to produce light-weight products. Due to environmental pressures and the requirement of light-weight parts with good mechanical properties, this technology recently gained significant attention. However, poor surface appearance and limited mechanical properties still prevent the wide applications of this technique.
  • 922
  • 16 Aug 2021
Topic Review
Applications of Polyvinyl Alcohol-Chitosan Hydrogel
Tissue engineering and regenerative medicine (TERM) holds great promise for addressing the growing need for innovative therapies to treat disease conditions. To achieve this, TERM relies on various strategies and techniques. The most prominent strategy is the development of a scaffold. Polyvinyl alcohol-chitosan (PVA-CS) scaffold emerged as a promising material in this field due to its biocompatibility, versatility, and ability to support cell growth and tissue regeneration. 
  • 918
  • 07 Jun 2023
Topic Review
Polymer Electrolyte Membrane Fuel Cell
Polymer electrolyte membrane fuel cells (PEMFCs) have been considered as electric power sources for cars, as well as stationary and portable power sources, due to their high energy efficiency, ease of operation, and environmental friendliness. Furthermore, as a promising power source, integrating PEMFCs into microgrids, which are a common structure in the smart grid framework, has been gaining traction around the world, encouraging the usage of hydrogen energy.
  • 916
  • 09 Aug 2021
Topic Review
Red Cabbage Anthocyanins in Smart Food Packaging, Sensors
Anthocyanins, as one of the water-soluble phenolic compounds, are able to generate a wide range of colors (for example, blue, purple, orange, and red) that are widely isolated from flowers, cereals, fruits, and vegetables. In addition, based on the pH values of the solution, anthocyanins can be found in different colors and chemical forms that can monitor food quality parameters, and eventually, keep track of food products over the shelf life period. The reversible color attributes of anthocyanins-rich solutions are associated with the source, composition, and configuration of anthocyanins.
  • 916
  • 28 Apr 2022
Topic Review
Historical Perspective on Membrane Science and Technology
Over the last few decades, considerable effort has been devoted to developing better membranes and extending their range of applications to different areas. Membrane processes already have an established role in gas separation and water treatment, and their applications in the food, pharmaceutical, and health areas have been continuously increasing. In the last few years, membrane processes proved to have a key role in biorefinery and bioenergy production processes, namely for process intensification and the recovery and purification of valuable products. Membranes are also a crucial component of electrochemical energy conversion devices, including fuel cells and electrolysers. Moreover, the growing environmental concerns have drawn attention to the use of fossil-based polymers and toxic solvents for membrane fabrication. Therefore, the development of new membranes, using polymers from renewable sources and more sustainable fabrication methods, is being pursued.
  • 914
  • 23 Feb 2022
Topic Review
Supercritical CO2
Supercritical CO2 (scCO2) is an alternative promising solvent that has been actively used in recent decades to simplify many processes of polymer synthesis, modification, decomposition, etc.
  • 913
  • 15 Nov 2022
Topic Review
Synthesis of Ferrocenyl Phosphorhydrazone Dendrimers
The discovery of ferrocene is often associated with the rapid growth of organometallic chemistry. Dendrimers are highly branched macromolecules that can be functionalized at will at all levels of their structure. The functionalization of dendrimers with ferrocene derivatives can be carried out easily as terminal functions on the surface, but also at the core, or at one or several layers inside the structure. Depending on the desired location of the ferrocenes in the structure of phosphorhydrazone dendrimers, the ferrocenes should be functionalized differently. For the grafting to the surface, the ferrocene should bear a phenol group, suitable to react in substitution reactions with the P(S)Cl2 terminal groups of the dendrimers. To be used as core, the ferrocene should have two aldehyde functions, from which the synthesis of the dendrimer will be carried out. To be introduced in the branches, at all layers or within a single layer, the ferrocene should replace hydroxybenzaldehyde; thus, it should bear both a phenol and an aldehyde.
  • 907
  • 06 Jun 2022
Topic Review
Hybrid Reinforced Polymer Matrix Composites
The use of composite materials has seen many new innovations for a large variety of applications. The area of reinforcement in composites is also rapidly evolving with many new discoveries, including the use of hybrid fibers, sustainable materials, and nanocellulose.
  • 900
  • 22 Feb 2023
Topic Review
Biopolymer-Based Dye Removal Technologies
Synthetic dyes have become an integral part of many industries such as textiles, tannin and even food and pharmaceuticals. Industrial dye effluents from various dye utilizing industries are considered harmful to the environment and human health due to their intense color, toxicity and carcinogenic nature.
  • 890
  • 23 Nov 2021
Topic Review
Polyvinyl Chloride in the Environment
Plastics have recently become an indispensable part of everyone’s daily life due to their versatility, durability, light weight, and low production costs. The increasing production and use of plastics poses great environmental problems due to their incomplete utilization, a very long period of biodegradation, and a negative impact on living organisms. Decomposing plastics lead to the formation of microplastics, which accumulate in the environment and living organisms, becoming part of the food chain. The contamination of soils and water with poly(vinyl chloride) (PVC) seriously threatens ecosystems around the world. Their durability and low weight make microplastic particles easily transported through water or air, ending up in the soil.
  • 886
  • 12 Jan 2024
Topic Review
Friction Stir Welding of Polymers
Friction Stir Welding (FSW) is one of the welding methods within the category of friction welding, as it uses the friction between the base material and the tool to generate the heat necessary to soften the material of the joint. The FSW process was developed, demonstrated and patented by “The Welding Institute (TWI)” in England for the first time by Thomas et al.. The principle of the conventional process is illustrated in, as well as its main variables.
  • 877
  • 30 Jun 2021
Topic Review
Polyurethanes and Green Chemistry
Polyurethanes are most often called “green” when they contain natural, renewable additives in their network or chemical structure, such as mono- and polysaccharides, vegetable oils, polyphenols, or various compounds derived from agro-waste white biotechnology. The use of these natural substrates is in line with the principles of green chemistry. However, other principles among all 12 can also be used in the production of polyurethanes.
  • 877
  • 11 Nov 2021
Topic Review
Lignin as Renewable Building Block for Sustainable Polyurethanes
Lignin, being a natural aromatic polymer rich in functional hydroxyl groups, has been drawing the interest of academia and industry for its valorization, especially for the development of polymeric materials. Among the different types of polymers that can be derived from lignin, polyurethanes (PUs) are amid the most important ones, especially due to their wide range of applications. Lignin, being a natural aromatic polymer rich in functional hydroxyl groups, has been drawing the interest of academia and industry for its valorization, especially for the development of polymeric materials. Among the different types of polymers that can be derived from lignin, polyurethanes (PUs) are amid the most important ones, especially due to their wide range of applications. 
  • 877
  • 20 Oct 2022
Topic Review
Vitreous Substitute
The ideal vitreous substitute should mimic the native vitreous in terms of both structure and function such as transparency, biocom-patibility, elasticity, easy injectability, except for its liquefication and biodegradability with age. Current vitreous substitutes are used in order to maintain certain criterias such as optical and biomechanical properties and intraocular pressure. Therefore, extensive research with biomaterials is underway taking into consideration its composition, structure and physiological properties as well to overcome the downside of the currently used tamponades.
  • 873
  • 15 Jan 2021
Topic Review
Synthetic Polymer-Based Sensors
Polymers are long-chain, highly molecular weight molecules containing large numbers of repeating units within their backbone derived from the product of polymerization of monomeric units. The materials exhibit unique properties based on the types of bonds that exist within their structures. Among these, some behave as rubbers because of their excellent bending ability, lightweight nature, and shape memory. Moreover, their tunable chemical, structural, and electrical properties make them promising candidates for their use as sensing materials. Polymer-based sensors are highly utilized in the current scenario in the public health sector and environment control due to their rapid detection, small size, high sensitivity, and suitability in atmospheric conditions.
  • 864
  • 16 Jun 2022
Topic Review
Additive Manufacturing for Antimicrobial Materials
3D Printing, also known as fused filament fabrication (FFF), continues to open new routes to the production of high-performance and complex structures with enhanced properties and dynamic shapes that are unattainable via conventional fabrication methods. 
  • 862
  • 23 Jun 2021
Topic Review
Polymer Electrolyte Membranes Fuel Cell
The development of sulfonated hydrocarbon polymer (SHP)-based polymer electrolyte membranes (PEMs) has been pursued in order to overcome drawbacks of the perfluorosulfonic acid ionomer-based PEMs in fuel cell applications. To improve the proton conductivity of SHP-based PEMs without deterioration in physicochemical stability, control of polymeric architecture is necessary to form distinct phase-separated structures between the hydrophilic and hydrophobic domains. By pursuing rational design strategies for the copolymer architectures, it will be possible to develop high-performance SHP-based PEMs in fuel cell applications. This study focused on the synthetic procedures which underlie structure-engineered copolymers and their PEM properties.
  • 862
  • 22 Oct 2021
Topic Review
Tire Rubber and Its Degradation Behavior
The use of ground tire rubber (GTR) for modifying asphalt is very promising and is a sustainable development strategy. The addition of GTR to asphalt shows many improvements in the physical, chemical and mechanical properties of the rubber asphalt binder, such as enhanced stiffness, increased skid resistance, extended service life, mitigated fatigue cracking and so on.
  • 861
  • 01 Nov 2022
Topic Review Peer Reviewed
Fluorescence in Smart Textiles
Fluorescence has been identified as an advantageous feature in smart fabrics, notably for the protection of humans during outdoor athletic activities, as well as for preventing counterfeiting and determining authenticity. Fluorescence in smart fabrics is achieved using dendrimers, rare earth metal compounds, and fluorescent dye. The principal method for producing fluorescent fabrics is to immerse the sample in a solution containing fluorescent agents. However, covalent connections between fluorophores and textile substates should be established to improve the stability and intensity of the fluorescent characteristics. Fabric can be fluorescent throughout, or fluorescent fibers can be woven directly into the textile structures, made of natural (cotton, silk) or synthetic (polyamide- and polyester-based) fibers, into a precise pathway that becomes visible under ultraviolet irradiation.
  • 859
  • 14 Nov 2023
Topic Review
Single-Component Cationic Photoinitiators
With the advantages offered by cationic photopolymerization (CP) such as broad wavelength activation, tolerance to oxygen, low shrinkage and the possibility of “dark cure”, it has attracted extensive attention in photoresist, deep curing and other fields in recent years. The applied photoinitiating systems (PIS) play a crucial role as they can affect the speed and type of the polymerization and properties of the materials formed. Much effort has been invested into developing cationic photoinitiating systems (CPISs) that can be activated at long wavelengths and overcome technical problems and challenges faced. 
  • 859
  • 24 Jul 2023
  • Page
  • of
  • 23
ScholarVision Creations