The principal objective of wastewater treatment is generally to allow human and industrial effluents to be disposed of without danger to human health or unacceptable damage to the natural environment. Typical processes that are investigated and applied to wastewater treatment can be the following: biological, adsorption, flocculation, oxidation, membranes, filtration, etc. This entry collection features information about many processes of wastewater treatment and many other related issues such as reuse, cost, fluid aspects, plants, etc.

Expand All
Topic Review
Hydroxyapatite and Derivatives for Photocatalytic and Antibacterial Applications
Hydroxyapatite (HAp) is an attractive bioceramic from an environmental point of view. It mainly allows ion exchange between Ca2+ and other metal ions, making it an attractive material in the photodegradation of aquatic life effluents. Strategies for the performance of HAp-based functionalized material were reported, for example, doping, immobilization, deposition, incorporation, and support. Due to the production of stoichiometric defects capable of estimating response in the presence of light (UV, visible or solar) through charge carriers' interaction and/or mobility. Its favors photocatalytic performance and positive responses in the physicochemical properties to form an effective and sustainable photocatalyst.  
  • 126
  • 26 May 2022
Topic Review
Classifications of Adsorptive Ultrafiltration Membrane
Adsorptive ultrafiltration mixed matrix membranes (MMMs) are a new strategy, developed in recent years, to remove harmful cations and small-molecule organics from wastewater and drinking water, which achieve ultrafiltration and adsorption functions in one unit and are considered to be among the promising technologies that have exhibited efficiency and competence in water reuse.
  • 95
  • 17 May 2022
Topic Review
Wastewater Removal Strategies of Microplastic Pollution
Plastics have been one of the most useful materials in the world, due to their distinguishing characteristics: light weight, strength, flexibility, and good durability. In recent years, the growing consumption of plastics in industries and domestic applications has revealed a serious problem in plastic waste treatments. Pollution by microplastics has been recognized as a serious threat since it may contaminate all ecosystems, including oceans, terrestrial compartments, and the atmosphere. This micropollutant is spread in all types of environments and is serving as a “minor but efficient” vector for carrier contaminants such as pesticides, pharmaceuticals, metals, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). The need to deeply study and update the evolution of microplastic sources, toxicology, extraction and analysis, behavior and removal strategies is imperative.
  • 260
  • 11 May 2022
Topic Review
Sustainability Goals within the UK Water Industry
The UK water industry is subject to a rolling cycle of investment to meet regulatory requirements. Moreover, this sits within the context of a constant state of flux due to the changing climate and political and societal priorities. Therefore, interventions such as improved wastewater treatment (to reduce nutrient levels entering rivers) are likely to experience conditions over the asset life, which vary widely from design parameters. This leads to a cycle of modification and upgrading in order to maintain or improve treatment processes which could include abortive investment.
  • 109
  • 05 May 2022
Topic Review
Power Generation in Sewage-Water Treatment Plants
Sewage-water treatment comprehends primary, secondary, and tertiary steps to produce reusable water after removing sewage contaminants. However, a sewage-water treatment plant is typically a power and energy consumer and produces high volumes of sewage sludge mainly generated in the primary and secondary steps. The use of more efficient anaerobic digestion of sewage water with sewage sludge can produce reasonable flowrates of biogas, which is shown to be a consolidated strategy towards the energy self-sufficiency and economic feasibility of sewage-water treatment plants. Anaerobic digestion can also reduce the carbon footprint of energy sources since the biogas produced can replace fossil fuels for electricity generation. 
  • 212
  • 05 May 2022
Topic Review
Functional Materials for Wastewater Treatment
Functional materials play a central role in the advancement of these technologies due to their highly tunable properties and functions. 
  • 105
  • 27 Apr 2022
Topic Review
Virus Monitoring Strategies for Wastewater Reuse
Wastewater reclamation and reuse have the potential to supplement water supplies, offering resiliency in times of drought and helping to meet increased water demands associated with population growth. Non-potable water reuse represents the largest potential reuse market. Yet, economic constraints for new water reuse infrastructure and safety concerns due to microbial water quality, especially viral pathogen exposure, limit the widespread implementation of water reuse. Cost-effective, real-time methods to measure or indicate the viral quality of recycled water would do much to instill greater confidence in the practice.  One of the greatest challenges of water-quality monitoring is that pathogens (including viruses as well as bacteria and protozoa) are often present at concentrations high enough to present disease risks but too low for direct detection. As a result, a variety of surrogate microorganisms are used as indicators of microbial water quality. 
  • 131
  • 22 Apr 2022
Topic Review
Anoxygenic Photosynthesis in Photolithotrophic Sulfur Bacteria
Hydrogen sulfide is a toxic compound that can affect various groups of water microorganisms. Photolithotrophic sulfur bacteria including Chromatiaceae and Chlorobiaceae are able to convert inorganic substrate (hydrogen sulfide and carbon dioxide) into organic matter deriving energy from photosynthesis. This process takes place in the absence of molecular oxygen and is referred to as anoxygenic photosynthesis, in which exogenous electron donors are needed. These donors may be reduced sulfur compounds such as hydrogen sulfide. 
  • 118
  • 22 Apr 2022
Topic Review
Microbial Electrolysis Cell as a Diverse Technology
Microbial electrolysis cells (MECs) have been explored for various applications, including the removal of industrial pollutants, wastewater treatment chemical synthesis, and biosensing. On the other hand, MEC technology is still in its early stages and faces significant obstacles regarding practical large-scale implementations. MECs are used for energy generation and hydrogen peroxide, methane, hydrogen/biohydrogen production, and pollutant removal. 
  • 117
  • 19 Apr 2022
Topic Review
Phosphorus Recovery from Sewage Sludge Ash
Phosphorus is an essential and limited element that cannot be replaced by any other. Phosphorus deposits in the world are rapidly depleting, so methods of recovering phosphorus from alternative sources and using it as a fertilizer in agriculture are becoming increasingly popular. Struvite from sewage sludge ash contains phosphorus, and also a significant amount of nitrogen and magnesium. It is considered an effective slow-release fertilizer that can be successfully applied to agricultural, vegetable, and ornamental crops. The slower leaching of nutrients and high fertilizer quality, and high phosphorus content can make struvite an environmentally friendly fertilizer. However, its production is not yet sustainable. The cradle-to-cradle (C2C) concept has made it possible to highlight the so-called critical points in the production of such fertilizer. Limitations are environmental  (concerns about heavy metals content in sewage sludge ash), legal (standard testing, product certification, quality control), economic (cost of energy, supply-chain), legal aspects (still not implemented as a mineral fertilizer under general EU regulations) and looses during P fertilizer production. 
  • 129
  • 18 Apr 2022
  • Page
  • of
  • 10