Topic Review
Biogas Production from Maize Silage after Acid-Heat Pretreatment
One of the most effective technologies involving the use of lignocellulosic biomass is the production of biofuels, including methane-rich biogas. In order to increase the amount of gas produced, it is necessary to optimize the fermentation process, for example, by substrate pretreatment.
  • 487
  • 10 Dec 2021
Topic Review
Biogas Steam Reforming in Wastewater Treatment Plants
Hydrogen as an energy vector is going to play an important role in the global energy mix. On the other hand, wastewater management has become a worldwide concern, as urban settlements have been considerably increasing for decades. Consequently, biodigestion to produce biogas (rich in methane) in water treatment plants could be an interesting starting point to obtain a valuable gas that can be converted into hydrogen through steam reforming. 
  • 363
  • 15 Sep 2023
Topic Review
Bioglass
Bioglass 45S5, commonly referred to by its commercial name Bioglass, is a glass specifically composed of 45 wt% SiO2, 24.5 wt% CaO, 24.5 wt% Na2O, and 6.0 wt% P2O5.  Glasses are non-crystalline amorphous solids that are commonly composed of silica-based materials with other minor additives.  Compared to soda-lime glass (commonly used, as in windows or bottles), Bioglass 45S5 contains less silica and higher amounts of calcium and phosphorus.  The 45S5 name signifies glass with 45 weight % of SiO2 and 5:1 molar ratio of calcium to phosphorus.  This high ratio of calcium to phosphorus promotes formation of apatite crystals; calcium and silica ions can act as crystallization nuclei.  Lower Ca:P ratios do not bond to bone.  Bioglass 45S5's specific composition is optimal in biomedical applications because of its similar composition to that of hydroxyapatite, the mineral component of bone. This similarity provides Bioglass' ability to be integrated with living bone. This composition of bioactive glass is comparatively soft in comparison to other glasses. It can be machined, preferably with diamond tools, or ground to powder. Bioglass has to be stored in a dry environment, as it readily absorbs moisture and reacts with it. Bioglass 45S5 is the first formulation of an artificial material that was found to chemically bond with bone. One of its main medical advantages is its biocompatibility, seen in its ability to avoid an immune reaction and fibrous encapsulation. Its primary application is the repair of bone injuries or defects too large to be regenerated by the natural process. The first successful surgical use of Bioglass 45S5 was in replacement of ossicles in the middle ear, as a treatment of conductive hearing loss. Other uses include cones for implantation into the jaw following a tooth extraction. Composite materials made of Bioglass 45S5 and patient's own bone can be used for bone reconstruction. Further research is being conducted for the development of new processing techniques to allow for more applications of Bioglass.
  • 1.5K
  • 01 Nov 2022
Topic Review
Biohydrogen
Biohydrogen means the new strategies to reach green and sustainable hydrogen production and exploitation technologies.
  • 990
  • 25 Feb 2021
Topic Review
Biojet Fuel Technologies
Biojet fuels have been gaining traction in the aviation industry as a more sustainable alternative to traditional jet fuel for over a decade now. According to a report by the International Air Transport Association (IATA), in 2022, the production capacity of SAFs including biojet fuels, surpassed 300 million litres (79.2 million gallons) globally.
  • 340
  • 29 Aug 2023
Topic Review
Bioleaching
In bioleaching, the function of the solvent is performed by microorganisms, by the action of either bacteria or fungi, as they participate in the biogeochemical cycle of minerals in direct ways by the metabolism of the microorganisms or indirectly by the products of their metabolism. Therefore, bioleaching is defined as the solubilization of metals from insoluble solid substrates.
  • 754
  • 18 Jul 2023
Topic Review
Bioleaching of Sorghum Straw in Bioreactors
Lignocellulosic biomass is the most abundant renewable feedstock to produce biofuels and biochemicals. Previous research has demonstrated the potential of bioleaching, with its superior capability of removing certain inorganic compounds compared to water leaching, to improve biomass quality for thermochemical conversion in biofuel production.
  • 461
  • 01 Dec 2021
Topic Review
Biological and Physiological Role of Oxidative Stress
Antioxidants are a class of molecules with an innate affinity to neutralize reactive oxygen species (ROS), which are known to cause oxidative stress. Oxidative stress has been associated with a wide range of diseases mediated by physiological damage to the cells.
  • 698
  • 06 Jan 2022
Topic Review
Biological Killing by Cold Plasma
Cold Atmospheric Plasma (CAP) is a near-room-temperature partially ionized gas, composed of reactive oxygen and nitrogen species. CAP also generates physical factors, including ultraviolet irradiation, thermal emission, and an electromagnetic (EM) effect. The multimodal chemical and physical nature of CAP makes it a suitable, controllable, flexible, and even a self-adaptive tool for many medical and biological applications, ranging from microorganism sterilization, dermatitis, wound healing, and cancer therapy. It is promising that CAP could help to mitigate the COVID 19 pandemic by effectively inactivating the SARS-CoV-2 virus on diverse surfaces.  Biological killing is a foundation to understand these applications. Reactive species and their radical effects are the foundation to cause the CAP-based biological destruction in most cases. Basically, plasma medicine has even been regarded as a reactive species-based medicine. Here, we provide a systematic introduction and critical summary of the entire picture of biological killing due to CAP treatment and corresponding mechanisms based on the latest discoveries. This work provides guiding principles for diverse applications of CAP in modern biotechnology and medicine.
  • 675
  • 28 Sep 2021
Topic Review
Biological Methods of Producing Hydrogen from Biomass
Hydrogen is an environmentally friendly biofuel which, if widely used, could reduce atmospheric carbon dioxide emissions. The main barrier to the widespread use of hydrogen for power generation is the lack of technologically feasible and—more importantly—cost-effective methods of production and storage. Hydrogen has been produced using thermochemical methods (such as gasification, pyrolysis or water electrolysis) and biological methods (most of which involve anaerobic digestion and photofermentation), with conventional fuels, waste or dedicated crop biomass used as a feedstock. Microalgae possess very high photosynthetic efficiency, can rapidly build biomass, and possess other beneficial properties, which is why they are considered to be one of the strongest contenders among biohydrogen production technologies.
  • 242
  • 29 Feb 2024
  • Page
  • of
  • 678
Video Production Service