Topic Review
Bioglass
Bioglass 45S5, commonly referred to by its commercial name Bioglass, is a glass specifically composed of 45 wt% SiO2, 24.5 wt% CaO, 24.5 wt% Na2O, and 6.0 wt% P2O5.  Glasses are non-crystalline amorphous solids that are commonly composed of silica-based materials with other minor additives.  Compared to soda-lime glass (commonly used, as in windows or bottles), Bioglass 45S5 contains less silica and higher amounts of calcium and phosphorus.  The 45S5 name signifies glass with 45 weight % of SiO2 and 5:1 molar ratio of calcium to phosphorus.  This high ratio of calcium to phosphorus promotes formation of apatite crystals; calcium and silica ions can act as crystallization nuclei.  Lower Ca:P ratios do not bond to bone.  Bioglass 45S5's specific composition is optimal in biomedical applications because of its similar composition to that of hydroxyapatite, the mineral component of bone. This similarity provides Bioglass' ability to be integrated with living bone. This composition of bioactive glass is comparatively soft in comparison to other glasses. It can be machined, preferably with diamond tools, or ground to powder. Bioglass has to be stored in a dry environment, as it readily absorbs moisture and reacts with it. Bioglass 45S5 is the first formulation of an artificial material that was found to chemically bond with bone. One of its main medical advantages is its biocompatibility, seen in its ability to avoid an immune reaction and fibrous encapsulation. Its primary application is the repair of bone injuries or defects too large to be regenerated by the natural process. The first successful surgical use of Bioglass 45S5 was in replacement of ossicles in the middle ear, as a treatment of conductive hearing loss. Other uses include cones for implantation into the jaw following a tooth extraction. Composite materials made of Bioglass 45S5 and patient's own bone can be used for bone reconstruction. Further research is being conducted for the development of new processing techniques to allow for more applications of Bioglass.
  • 1.6K
  • 01 Nov 2022
Topic Review
Supercritical Carbon Dioxide(s-CO2) Power Cycle
Supercritical CO2 power cycles have been deeply investigated in recent years. However, their potential in waste heat recovery is still largely unexplored. This paper presents a critical review of engineering background, technical challenges, and current advances of the s-CO2 cycle for waste heat recovery. Firstly, common barriers for the further promotion of waste heat recovery technology are discussed. Afterwards, the technical advantages of the s-CO2 cycle in solving the abovementioned problems are outlined by comparing several state-of-the-art thermodynamic cycles. On this basis, current research results in this field are reviewed for three main applications, namely the fuel cell, internal combustion engine, and gas turbine. For low temperature applications, the transcritical CO2 cycles can compete with other existing technologies, while supercritical CO2 cycles are more attractive for medium- and high temperature sources to replace steam Rankine cycles. Moreover, simple and regenerative configurations are more suitable for transcritical cycles, whereas various complex configurations have advantages for medium- and high temperature heat sources to form cogeneration system. Finally, from the viewpoints of in-depth research and engineering applications, several future development directions are put forward. This review hopes to promote the development of s-CO2 cycles for waste heat recovery.
  • 1.6K
  • 25 Nov 2020
Topic Review
Internet of Wearable Things
The Internet of Wearable Things (IoWT) aims to improve people’s quality of daily life. It involves sensors fitted into wearable devices, monitoring the individual’s activity, health factors, and other things. 
  • 1.6K
  • 15 Nov 2022
Topic Review
Green Bioprocessing of Algae-Derived Biopolymers
Algae-based biopolymers may be modified by adding additives, plasticizers, and compatibilizers to enhance the intermolecular force of contact between components, and boost material strength, flexibility, and durability. Moreover, biopolymers are widely used in cosmetics, medicines, and food packaging. Furthermore, algal biopolymer could be used as a food additive due to its high nutritional content.
  • 1.6K
  • 19 Jan 2023
Topic Review
P5 (Microarchitecture)
The original Pentium microprocessor was introduced by Intel on March 22, 1993. It was instruction set compatible with the 80486 but was a new and very different microarchitecture design. The P5 Pentium was the first superscalar x86 microarchitecture and the world’s first superscalar microprocessor to be in mass production. It included dual integer pipelines, a faster floating-point unit, wider data bus, separate code and data caches as well as many other techniques and features to enhance performance and support security, encryption, and multiprocessing for workstations and servers. Considered the fifth main generation in the 8086 compatible line of processors, its implementation and microarchitecture was called P5. As with all new processors from Intel since the Pentium, some new instructions were added to enhance performance for specific types of workloads. The Pentium was the first Intel x86 to build in robust hardware support for multiprocessing similar to that of large IBM mainframe computers. Intel worked closely with IBM to define this capability and then Intel designed it into the P5 microarchitecture. This new capability was not present in prior x86 generations or x86 copies from competitors. In order to realize its greatest potential, compilers had to be optimized to take advantage of the instruction level parallelism provided by the new superscalar dual pipelines and applications needed to be recompiled. Intel spent substantial effort and resources working with development tool vendors, and major ISV and OS companies to optimize their products for Pentium prior to product launch. In October 1996, the similar Pentium MMX was introduced, complementing the same basic microarchitecture with the MMX instruction set, larger caches, and some other enhancements. Competitors included Motorola 68040, Motorola 68060, PowerPC 601, SPARC, MIPS, Alpha families, most of which also used a superscalar in-order dual instruction pipeline configuration at some time. Intel discontinued the P5 Pentium processors (sold as a cheaper product since the Pentium II of 1997) in early 2000 in favor of the Celeron processor, which had also replaced the 80486 brand.
  • 1.6K
  • 06 Oct 2022
Topic Review
HVAC
Heating, ventilation, and air conditioning (HVAC) is the technology of indoor and vehicular environmental comfort. Its goal is to provide thermal comfort and acceptable indoor air quality. HVAC system design is a subdiscipline of mechanical engineering, based on the principles of thermodynamics, fluid mechanics and heat transfer. "Refrigeration" is sometimes added to the field's abbreviation, as HVAC&R or HVACR or "ventilation" is dropped, as in HACR (as in the designation of HACR-rated circuit breakers). HVAC is an important part of residential structures such as single family homes, apartment buildings, hotels and senior living facilities, medium to large industrial and office buildings such as skyscrapers and hospitals, on ships and submarines, and in marine environments, where safe and healthy building conditions are regulated with respect to temperature and humidity, using fresh air from outdoors. Ventilating or ventilation (the V in HVAC) is the process of exchanging or replacing air in any space to provide high indoor air quality which involves temperature control, oxygen replenishment, and removal of moisture, odors, smoke, heat, dust, airborne bacteria, carbon dioxide, and other gases. Ventilation removes unpleasant smells and excessive moisture, introduces outside air, keeps interior building air circulating, and prevents stagnation of the interior air. Ventilation includes both the exchange of air to the outside as well as circulation of air within the building. It is one of the most important factors for maintaining acceptable indoor air quality in buildings. Methods for ventilating a building may be divided into mechanical/forced and natural types.
  • 1.6K
  • 10 Nov 2022
Topic Review
Photovoltaics on Landmark Buildings
This study, framed in the Work group 4 “Photovoltaic in built environment” within the COST Action PEARL PV, CA16235, aims to examine applications of integrated and applied photovoltaic technologies on ten landmark buildings characterised by distinctive geometries, highlighting the aesthetics of their architecture and quality of PV integration based on a proposed set of seven criteria.
  • 1.6K
  • 24 Oct 2020
Topic Review
Massive MIMO Systems for 5G
The global bandwidth shortage in the wireless communication sector has motivated the study and exploration of wireless access technology known as massive Multiple-Input Multiple-Output (MIMO). Massive MIMO is one of the key enabling technology for next-generation networks, which groups together antennas at both transmitter and the receiver to provide high spectral and energy efficiency using relatively simple processing. Obtaining a better understating of the massive MIMO system to overcome the fundamental issues such as pilot contamination, channel estimation, precoding, user scheduling, energy efficiency, and signal detection is vital for the successful deployment of 5G and beyond networks. Some of the recent trends in massive MIMO are terahertz communication, ultra massive MIMO (UM-MIMO), visible light communication (VLC), machine learning, and deep learning. 
  • 1.6K
  • 23 Feb 2021
Topic Review
Computer Vision and Convolutional Neural Networks
Computer vision (CV) combined with a deep convolutional neural network (CNN) has emerged as a reliable analytical method to effectively characterize and quantify high-throughput phenotyping of different grain crops, including rice, wheat, corn, and soybean. In addition to the ability to rapidly obtain information on plant organs and abiotic stresses, and the ability to segment crops from weeds, such techniques have been used to detect pests and plant diseases and to identify grain varieties. The development of corresponding imaging systems to assess the phenotypic parameters, yield, and quality of crop plants will increase the confidence of stakeholders in grain crop cultivation, thereby bringing technical and economic benefits to advanced agriculture.
  • 1.6K
  • 14 Nov 2022
Topic Review
Solid State Transformers in Distribution System
Solid State Transformer (SST) is considered to be the most suitable and appropriate conversion device to replace the traditional prevailing transformer. In this device, the weight/volume savings, extensive efficiency enhancement and above all, the cost economization are taken to be the hallmarks. SST configuration comprises of three main stages (i.e., a rectifier, isolation through the HF transformer and finally the DC-AC converter to reproduce line frequency AC).
  • 1.6K
  • 01 Dec 2022
  • Page
  • of
  • 650
ScholarVision Creations