Topic Review
Approaches to Identify Functional SNPs in mRNA 3′UTRs
The complementary interaction of microRNAs (miRNAs) with their binding sites in the 3′untranslated regions (3′UTRs) of target gene mRNAs represses translation, playing a leading role in gene expression control. MiRNA recognition elements (MREs) in the 3′UTRs of genes often contain single nucleotide polymorphisms (SNPs), which can change the binding affinity for target miRNAs leading to dysregulated gene expression. Accumulated data suggest that these SNPs can be associated with various human pathologies (cancer, diabetes, neuropsychiatric disorders, and cardiovascular diseases) by disturbing the interaction of miRNAs with their MREs located in mRNA 3′UTRs. Numerous data show the role of SNPs in 3′UTR MREs in individual drug susceptibility and drug resistance mechanisms. This work brief the data on such SNPs focusing on the most rigorously proven cases. Some SNPs belong to conventional genes from the drug-metabolizing system (in particular, the genes coding for cytochromes P450 (CYP 450), phase II enzymes (SULT1A1 and UGT1A), and ABCB3 transporter and their expression regulators (PXR and GATA4)). Other examples of SNPs are related to the genes involved in DNA repair, RNA editing, and specific drug metabolisms. The gene-by-gene studies and genome-wide approaches utilized or potentially utilizable to detect the MRE SNPs associated with individual response to drugs discussed.
  • 546
  • 24 Nov 2022
Topic Review
Appropriate Antibiotic Therapy for Intra-Abdominal Infections
Adequately controlling the source of infection and prescribing appropriately antibiotic therapy are the cornerstones of the management of patients with intra-abdominal infections (IAIs). Correctly classifying patients with IAIs is crucial to assessing the severity of their clinical condition and deciding the strategy of the treatment, including a correct empiric antibiotic therapy. Best practices in prescribing antibiotics may impact patient outcomes and the cost of treatment, as well as the risk of “opportunistic” infections such as Clostridioides difficile infection and the development and spread of antimicrobial resistance.
  • 394
  • 26 Oct 2022
Topic Review
Appropriate Vestibular Stimulation in Children and Adolescents
The structural development of the vestibular part of the inner ear is completed by birth but its central connections continue to develop until adolescence. Their development is dependent on vestibular stimulation—vestibular experience. Studies have shown that vestibular function, modulated by experience and epigenetic factors, is not solely an instrument for body position regulation, navigation, and stabilization of the head and images but also influences cognition, emotion, the autonomous nervous system and hormones. 
  • 295
  • 27 Dec 2023
Topic Review
Apps for Coronary Heart Disease
Mobile health applications (MHA) are discussed to contribute in overcoming this gap in treatment by fostering CHD management. First, MHA may support daily monitoring of activities and symptoms. Second, adherence to treatment and lifestyle changes can be increased by self-tracking, feedback, and reminder functions of MHA.
  • 613
  • 28 Oct 2021
Topic Review
Apps in Anesthesia
Modern anesthesia continues to be impacted in new and unforeseen ways by digital technology. Combining portability and versatility, mobile applications or “apps” provide a multitude of ways to enhance anesthetic and peri-operative care.
  • 418
  • 30 Nov 2023
Topic Review
Aptamer Technologies in Neuroscience
Aptamers developed using in vitro Systematic Evolution of Ligands by Exponential Enrichment (SELEX) technology are single-stranded nucleic acids 10–100 nucleotides in length. Their targets, often with specificity and high affinity, range from ions and small molecules to proteins and other biological molecules as well as larger systems, including cells, tissues, and animals. Aptamers often rival conventional antibodies with improved performance, due to aptamers’ unique biophysical and biochemical properties, including small size, synthetic accessibility, facile modification, low production cost, and low immunogenicity. Therefore, there is sustained interest in engineering and adapting aptamers for many applications, including diagnostics and therapeutics. 
  • 221
  • 06 Mar 2024
Topic Review
Aptamer-Based Immune Strategies for TNBC Treatment
Aptamer-based immunotherapy has great potential to overcome significant challenges in T cell immunotherapy for solid tumors mainly represented by strong immunosuppressive signals, which induce low T cell activation and decreased synthesis and release of cytotoxic proteins.
  • 479
  • 17 Apr 2023
Topic Review
Aptamer-Mediated Precision Therapy for Hematologic Malignancy
Hematologic malignancies, including leukemia, lymphoma, myeloproliferative disorder and plasma cell neoplasia, are genetically heterogeneous and characterized by an uncontrolled proliferation of their corresponding cell lineages in the bone marrow, peripheral blood, tissues or plasma. Although there are many types of therapeutic drugs available for the treatment of different malignancies, the relapse, drug resistance and severe side effects due to the lack of selectivity seriously limit their clinical application. Aptamers are ssDNA or RNA oligonucleotides that can also precisely deliver therapeutic agents into cancer cells through specifically recognizing the membrane protein on cancer cells, which is similar to the capabilities of monoclonal antibodies. Aptamers exhibit higher binding affinity, lower immunogenicity and higher thermal stability than antibodies.
  • 599
  • 20 Dec 2022
Topic Review
Aptamers for Cancer Treatment
Ovarian cancer (OC) is the most common lethal gynecologic cause of death in women worldwide, with a high mortality rate and increasing incidence. Despite advancements in the treatment, most OC patients still die from their disease due to late-stage diagnosis, the lack of effective diagnostic methods, and relapses. Aptamers, synthetic, short single-stranded oligonucleotides, have emerged as promising anticancer therapeutics. Their ability to selectively bind to target molecules, including cancer-related proteins and receptors, has revolutionized drug discovery and biomarker identification. Aptamers offer unique insights into the molecular pathways involved in cancer development and progression. Moreover, they show immense potential as drug delivery systems, enabling targeted delivery of therapeutic agents to cancer cells while minimizing off-target effects and reducing systemic toxicity. In the context of OC, the integration of aptamers with non-coding RNAs (ncRNAs) presents an opportunity for precise and efficient gene targeting. 
  • 276
  • 23 Nov 2023
Topic Review
Aptamers for Multiple Myeloma Precision Medicine
Multiple Myeloma (MM) is a clonal B-cell neoplasm characterized by the uncontrolled proliferation and accumulation of malignant plasma cells (PCs) in the bone marrow. Aptamers are short oligonucleotide ligands that bind their targets with great affinity and specificity, and can be easily conjugated to different cargoes for their cell-specific delivery.
  • 547
  • 22 Nov 2022
  • Page
  • of
  • 1352
ScholarVision Creations