Topic Review
Treating Traumatic Brain Injuries
Traumatic brain injury (TBI) is defined as an injury caused by an external force that results in the disruption of normal brain function. In the United States, between 2016–2017, there were approximately 451,000 cases of TBI that resulted in hospitalization. The most common mechanisms of injury contributing to TBI were unintentional falls and motor vehicle crashes.
  • 1.0K
  • 05 Aug 2021
Topic Review
Sulfur Compounds in Garlic for Asthma Treatment
Asthma is a chronic inflammatory disease in the airways with a multifactorial origin but with inflammation and oxidative stress as related pathogenic mechanisms. Garlic (Allium sativum) is a nutraceutical with different biological properties due to sulfur-containing natural compounds. Studies have shown that several compounds in garlic may have beneficial effects on cardiovascular diseases, including those related to the lungs. Therefore, it is possible to take advantage of the compounds from garlic as nutraceuticals for treating lung diseases.
  • 1.0K
  • 14 Dec 2022
Topic Review
Mango Peel Pectin: Recovery, Functionality and Sustainable Uses
Mango peel is the byproduct of agro-processing and has been used for high value-added components such as polysaccharide biopolymers. Pectin derived from the peel is yet to be exploited to its greatest extent, particularly in terms of its separation and physiochemical properties, which limit its applicability to dietary fiber in culinary applications. The functionality of the mango peel pectin (MPP) strongly depends on the molecular size and degree of esterification which highlight the importance of isolation and characterisation of pectin from this novel resource.
  • 1.0K
  • 29 Mar 2022
Topic Review
Luteolin
Luteolin (3′,4′,5,7-tetrahydroxyflavone), a member of the flavonoid family derived from plants and fruits, shows a wide range of biomedical applications. In fact, due to its anti-inflammatory, antioxidant and immunomodulatory activities, Asian medicine has been using luteolin for centuries to treat several human diseases, including arthritis, rheumatism, hypertension, neurodegenerative disorders and various infections. Of note, luteolin displays many anti-cancer/anti-metastatic properties.
  • 1.0K
  • 01 Jun 2023
Topic Review
Neuropathic Pain
Neuropathic pain in humans arises as a consequence of injury or disease of somatosensory nervous system at peripheral or central level. Peripheral neuropathic pain is more common than central neuropathic pain, and is supposed to result from peripheral mechanisms, following nerve injury. The animal models of neuropathic pain show extensive functional and structural changes occurring in neuronal and non-neuronal cells in response to peripheral nerve injury. These pathological changes following damage lead to peripheral sensitization development, and subsequently to central sensitization initiation with spinal and supraspinal mechanism involved. The aim of this narrative review paper is to discuss the mechanisms engaged in peripheral neuropathic pain generation and maintenance, with special focus on the role of glial, immune, and epithelial cells in peripheral nociception. Based on the preclinical and clinical studies, interactions between neuronal and non-neuronal cells have been described, pointing out at the molecular/cellular underlying mechanisms of neuropathic pain, which might be potentially targeted by topical treatments in clinical practice. The modulation of the complex neuro-immuno-cutaneous interactions in the periphery represents a strategy for the development of new topical analgesics and their utilization in clinical settings.
  • 1.0K
  • 18 Feb 2021
Topic Review
Voltage-Gated K+ Channels
Voltage-gated K+ (Kv) channels are intrinsic plasma membrane proteins mediating the selective flow of potassium ions in response to depolarization of the transmembrane electric field. Their ionic selectivity and voltage dependence allow Kv channels to be central players in virtually all physiological functions, including the maintenance and modulation of neuronal and muscular (both cardiac and skeletal) excitability, regulation of calcium signaling cascades, control of cell volume, immune response, hormonal secretion, and others.
  • 1.0K
  • 29 Jan 2022
Topic Review
Fluoride Toxicity
The practice of community water fluoridation used prophylactically against dental caries increased concern of adverse fluoride effects. Millions of people living in endemic fluorosis areas suffer from various pathological disturbances. Authors assessed the publications on fluoride toxicity until June 2020. Authors present evidence that fluoride is an enzymatic poison, inducing oxidative stress, hormonal disruptions, and neurotoxicity. Fluoride in synergy with aluminum acts as a false signal in G protein cascades of hormonal and neuronal regulations in much lower concentrations than fluoride acting alone. Our review shows the impact of fluoride on human health. We suggest focusing the research on fluoride toxicity to the underlying integrative networks. Ignorance of the pluripotent toxic effects of fluoride might contribute to unexpected epidemics in the future.
  • 1.0K
  • 27 Oct 2020
Topic Review
Deubiquitinating Enzyme Inhibition in Cancer
Since the discovery of the ubiquitin proteasome system (UPS), the roles of ubiquitinating and deubiquitinating enzymes (DUBs) have been widely elucidated. The ubiquitination of proteins regulates many aspects of cellular functions such as protein degradation and localization, and also modifies protein-protein interactions. DUBs cleave the attached ubiquitin moieties from substrates and thereby reverse the process of ubiquitination. The dysregulation of these two paramount pathways has been implicated in numerous diseases, including cancer. Attempts are being made to identify inhibitors of ubiquitin E3 ligases and DUBs that potentially have clinical implications in cancer, making them an important target in the pharmaceutical industry. Therefore, studies in medicine are currently focused on the pharmacological disruption of DUB activity as a rationale to specifically target cancer-causing protein aberrations. Here, we briefly discuss the pathophysiological and physiological roles of DUBs in key cancer-related pathways. We also discuss the clinical applications of promising DUB inhibitors that may contribute to the development of DUBs as key therapeutic targets in the future.
  • 1.0K
  • 09 Oct 2020
Topic Review
Age-Related Diseases
Aging is a multifactorial dynamic process that is influenced by a variety of external and internal variables, including environmental, demographic, and biopsychosocial factors, to determine the development and progression of age-related diseases, rather than being a solely static intrinsic process of cellular alterations.
  • 1.0K
  • 15 Apr 2021
Topic Review
Metabolic Equivalent
The Metabolic Equivalent of Task (MET), or simply metabolic equivalent, is a physiological measure expressing the energy cost of physical activities and is defined as the ratio of metabolic rate (and therefore the rate of energy consumption) during a specific physical activity to a reference metabolic rate, set by convention to 3.5 ml O2·kg−1·min−1 or approximately: [math]\displaystyle{ \text{1 MET}\ = 1 \dfrac{\text{kcal}}{\text{kg}*\text{h}}\ = 4.184 \dfrac{\text{kJ}}{\text{kg}*\text{h}} = 1.1622222... \dfrac{\text{W}}{\text{kg}} }[/math] Still another definition of 1 MET is 58.2 W/m2 (18.4 Btu/h·ft2), which is equal to the rate of energy produced per unit surface area of an average person seated at rest. The surface area of an average person is 1.8 m2 (19 ft2). Metabolic rate is usually expressed in terms of unit area of the total body surface (ANSI/ASHRAE Standard 55). Originally, 1 MET was considered as the Resting Metabolic Rate (RMR) obtained during quiet sitting. MET values of activities range from 0.9 (sleeping) to 23 (running at 22.5 km/h or a 4:17 mile pace). Although the RMR of any person may deviate from the reference value, MET can be thought of as an index of the intensity of activities: for example, an activity with a MET value of 2, such as walking at a slow pace (e.g., 3 km/h) would require twice the energy that an average person consumes at rest (e.g., sitting quietly). MET is used as a means of expressing the intensity and energy expenditure of activities in a way comparable among persons of different weight. Actual energy expenditure (e.g., in calories or joules) during an activity depends on the person's body mass; therefore, the energy cost of the same activity will be different for persons of different weight. However, since the RMR is also dependent on body mass in a similar way, it is assumed that the ratio of this energy cost to the RMR of each person will remain more or less stable for the specific activity and thus independent of each person's weight. The 1 MET reference value of 1 kcal·kg−1·h−1, is used by convention and refers to a typical metabolism at rest of an "average" individual. It is not an approximation of Basal Metabolic Rate (BMR), which is the minimum metabolic rate obtained under specified conditions. This is illustrated by sleeping having a MET of 0.9, while an individual's normal sleeping metabolism may be greater than the BMR.
  • 1.0K
  • 14 Oct 2022
  • Page
  • of
  • 1352
ScholarVision Creations