Topic Review
Polymicrobial-Sepsis
Cecal ligation and puncture (CLP) is an experimental polymicrobial sepsis induced systemic inflammation that leads to acute organ failure. Aim of our study was to evaluate the effects of SP600125, a specific c-Jun NH2-terminal kinase (JNK) inhibitor, to modulate the early and late steps of the inflammatory cascade in a murine model of CLP-induced sepsis. CB57BL/6J mice were subjected to CLP or sham operation. Animals were randomized to receive either SP600125 (15 mg/kg) or its vehicle intraperitoneally 1 hour after surgery and repeat treatment every 24 hours. To evaluate survival, a group of animals was monitored every 24 hours for 120 hours. Two other animals were sacrificed 4 or 18 hours after surgical procedures; lung and liver samples were collected for biomolecular and histopathologic analysis. The expression of p-JNK, p-ERK, TNF-α, HMGB-1, NF-κB, Ras, Rho, Caspase 3, Bcl-2, and Bax was evaluated in lung and liver samples; SP600125 improved survival, reduced CLP induced activation of JNK, NF-κB, TNF-α, and HMGB-1, inhibited proapoptotic pathway, preserved Bcl-2 expression, and reduced histologic damage in both lung and liver of septic mice. SP600125 protects against CLP induced sepsis by blocking JNK signalling; therefore, it can be considered a therapeutic approach in human sepsis.
  • 842
  • 01 Nov 2020
Topic Review
Polyphenols against COVID-19 Cytokines storm
SARS-CoV-2 first emerged in China during late 2019 and rapidly spread all over the world. Alterations in the inflammatory cytokines pathway represent a strong signature during SARS-COV-2 infection and correlate with poor prognosis and severity of the illness. The hyper-activation of the immune system results in an acute severe systemic inflammatory response named cytokine release syndrome (CRS). No effective prophylactic or post-exposure treatments are available, although some anti-inflammatory compounds are currently in clinical trials. Studies of plant extracts and natural compounds show that polyphenols can play a beneficial role in the prevention and the progress of chronic diseases related to inflammation. The aim of this manuscript is to review the published background on the possible effectiveness of polyphenols to fight SARS-COV-2 infection, contributing to the reduction of inflammation. Here, some of the anti-inflammatory therapies are discussed and although great progress has been made though this year, there is no proven cytokine blocking agents for COVID currently used in clinical practice. In this regard, bioactive phytochemicals such as polyphenols may become promising tools to be used as adjuvants in the treatment of SARS-CoV-2 infection. Such nutrients, with anti-inflammatory and antioxidant properties, associated to classical anti-inflammatory drugs, could help in reducing the inflammation in patients with COVID-19.
  • 842
  • 06 Jan 2021
Topic Review
People with Aphasia
People with Aphasia (PWA) are individuals who experience difficulties in one or more aspects of communication, such as the ability to speak, understand, read and write, due to acquired brain damage (e.g.stroke, dementia, brain tumour, traumatic brain injury).  
  • 842
  • 27 Oct 2020
Topic Review
Dengue and Chikungunya
Dengue and chikungunya are the vector-borne diseases, that are transmitted to humans by the mosquitoes Aedes aegypti and Aedes albopictus. This study aimed to show the spatial and temporal distribution of those diseases in the Hindu Kush Himalayan region.   
  • 842
  • 27 Oct 2020
Topic Review
Euphorbia cactus
Euphorbia cactus Ehrenb ex Boiss. is a plant species reported from central Africa and the southern Arabian Peninsula, belonging to the family of Euphorbiaceae. The plant has ethnobotanical values and is well-known for its milky latex, which has been turned into medicine to treat various ailments. 
  • 842
  • 16 Mar 2022
Topic Review
Preclinical Prostate Cancer Research
We address the challenges of using primary cultures and patient-derived xenografts to study prostate cancer. We describe emerging approaches using primary prostate epithelial cells and prostate organoids and their genetic manipulation for disease modelling. Furthermore, the use of human prostate-derived induced pluripotent stem cells (iPSCs) is highlighted as a promising complimentary approach. Finally, we discuss the manipulation of iPSCs to generate ‘avatars’ for drug disease testing. Specifically, we describe how a conceptual advance through the creation of living biobanks of "genetically engineered cancers" that contain patient-specific driver mutations hold promise for personalised medicine. 
  • 841
  • 27 Oct 2020
Topic Review
Esophageal Vagal afferent C-fibers' Functions
Heartburn and non-cardiac chest pain are the predominant symptoms in many esophageal disorders, such as gastroesophageal reflux disease (GERD), non-erosive reflux disease (NERD), functional heartburn and chest pain, and eosinophilic esophagitis (EoE). At present, neuronal mechanisms underlying the process of interoceptive signals in the esophagus are still less clear. Noxious stimuli can activate a subpopulation of primary afferent neurons at their nerve terminals in the esophagus. The evoked action potentials are transmitted through both the spinal and vagal pathways to their central terminals, which synapse with the neurons in the central nervous system to induce esophageal nociception. Over the last few decades, progress has been made in our understanding on the peripheral and central neuronal mechanisms of esophageal nociception. In this review, we focus on the roles of capsaicin-sensitive vagal primary afferent nodose and jugular C-fiber neurons in processing nociceptive signals in the esophagus. We briefly compare their distinctive phenotypic features and functional responses to mechanical and chemical stimulations in the esophagus. Then, we summarize activation and/or sensitization effects of acid, inflammatory cells (eosinophils and mast cells), and mediators (ATP, 5-HT, bradykinin, adenosine, S1P) on these two nociceptive C-fiber subtypes. Lastly, we discuss the potential roles of capsaicin-sensitive esophageal afferent nerves in processing esophageal sensation and nociception. A better knowledge of the mechanism of nociceptive signal processes in primary afferent nerves in the esophagus will help to develop novel treatment approaches to relieve esophageal nociceptive symptoms, especially those that are refractory to proton pump inhibitors.
  • 841
  • 16 Jul 2021
Topic Review
Lectin Protein
Lectins are natural proteins with the ability to bind specific carbohydrates related to various microorganisms, including viruses, bacteria, fungi and parasites. Lectins have the ability to agglutinate and neutralize these pathogeneses. The delivery of the encapsulated antiviral agents or vaccines across the cell membrane can be possible by functionalized micellar and liposomal formulations. 
  • 841
  • 14 Apr 2022
Topic Review
Chondrocyte Sheets
Chondrocyte sheets can be created without using material such as animal-derived collagen by using temperature-responsive culture devices such as thermo-responsive polymer grafted culture dishes, where cells can adhere, proliferate, and form into a sheet.  Hyaline cartilage regeneration by autologous chondrocyte sheets has already been demonstrated in clinical research. Chondrocyte sheet transplantation is a novel and promising approach to treating patients who have cartilage defects associated with osteoarthritis.
  • 841
  • 27 Oct 2020
Topic Review
VEGF/VEGFR in tumour anti-angiogenic therapy
It is now known that vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptors (VEGFRs) play a pivotal role in angiogenesis process. Nowadays, the use of inhibitors of angiogenesis promoting factors is a powerful tool in anticancer combination therapeutic strategies, especially in cancer anti-angiogenic therapy (AAT).
  • 841
  • 19 Apr 2021
  • Page
  • of
  • 1352
Video Production Service