Topic Review
MicroRNA-Assisted Hormone Cell Signaling
 miRNAs role in hormone signaling pathways in CRC drug resistance and their potential as future targets for overcoming resistance to treatment. 
  • 563
  • 18 Mar 2021
Topic Review
MicroRNA-7 (MiR-7) in Cancer Physiopathology
miRNAs are non-coding RNA sequences of approximately 22 nucleotides that interact with genes by inhibiting their translation through binding to their 3′ or 5′ UTR regions. Following their discovery, the role they play in the development of various pathologies, particularly cancer, has been studied. In this context, miR-7 is described as an important factor in the development of cancer because of its role as a tumor suppressor, regulating a large number of genes involved in the development and progression of cancer. Data support the function of miR-7 as a prognostic biomarker in cancer, and miR-7 has been proposed as a strategy in cancer therapy.
  • 895
  • 16 Aug 2022
Topic Review
MicroRNA-502-3p and Human Diseases: Focus on Alzheimer's Disease
The microRNA-500’s family has five different genotypes: microRNA-362, microRNA-500a, microRNA-500b, microRNA-501, and microRNA-502 (Genesnames.org). All the forms of miR-500 family members are expressed in humans and different animal species. The miR-502-3p sequence is 22 nucleotides long and is found in Homo sapiens (Has-miR-502-3p) as annotated by 7 gene databases such as MalaCards, miRBase, GeneCards, TarBase, ENA, RefSeq, and LncBase. The miR-502 were also found to be conserved in seven different animal species such as Cow (Bos taurus) Bta-miR-502a; Dog (Canis lupus familiaris) Cfa-miR-502; Horse (Equus caballus) Eca-miR-502-3p; Gorilla (Gorilla gorilla) Ggo-miR-502a; Rhesus monkey (Macaca mulatta) Mml-miR-502-3p); Rabbit (Oryctolagus cuniculus) Ocu-miR-502-3p; and Bornean orangutan (Pongo pygmaeus) Ppy-miR-502-3p (https://rnacentral.org/rna) (accessed on 26 February 2023). The miR-502-3p is encoded by the MIR502 gene (ENSG00000272080) which is composed of an 86 base-pairs genomic sequence, a plus stranded RNA orientation starting from 50,014,598, and ending at 50,014,683. The MiR502 gene is located at the Chromosome X genomic location: 50,014,598-50,014,683 forward strands.
  • 488
  • 13 Apr 2023
Topic Review
MicroRNA-21 Regulates Stemness in PDAC
Pancreatic ductal adenocarcinoma (PDAC) is the most common and aggressive type of pancreatic cancer (PCa) with a low survival rate. microRNAs (miRs) are endogenous, non-coding RNAs that moderate numerous biological processes. miRs have been associated with the chemoresistance and metastasis of PDAC and the presence of a subpopulation of highly plastic “stem”-like cells within the tumor, known as cancer stem cells (CSCs).
  • 313
  • 19 Apr 2022
Topic Review
MicroRNA Processing by Dicer
MicroRNAs (miRNAs) are small non-coding RNAs that are about 22 nucleotides in length. They regulate gene expression post-transcriptionally with the effector protein complex, containing Argonaute or trinucleotide repeat containing 6 (TNRC6) proteins, and target mRNAs in a sequence-dependent manner, causing the translational repression and destabilization of the target mRNAs. Both Drosha and Dicer, members of the RNase III family proteins, are essential components in the canonical miRNA biogenesis pathway. miRNA is transcribed into primary-miRNA (pri-miRNA) from genomic DNA. Drosha then cleaves the flanking regions of pri-miRNA into precursor-miRNA (pre-miRNA), while Dicer cleaves the loop region of the pre-miRNA to form a miRNA duplex. In this report, we summarized and discussed the current reports in which double-stranded RNA binding proteins (dsRBPs), such as TAR RNA binding protein (TRBP) or the adenosine deaminase acting on RNA (ADAR), modulate the processing of miRNA by Dicer in various manners. 
  • 1.5K
  • 01 Oct 2021
Topic Review
MicroRNA Interrelated Epithelial Mesenchymal Transition (EMT) in Glioblastoma
MicroRNAs (miRNA) are small non-coding RNAs that are 20–23 nucleotides in length, functioning as regulators of oncogenes or tumor suppressor genes. They are molecular modulators that regulate gene expression by suppressing gene translation through gene silencing/degradation, or by promoting translation of messenger RNA (mRNA) into proteins. Circulating miRNAs have attracted attention as possible prognostic markers of cancer, which could aid in the early detection of the disease. Epithelial to mesenchymal transition (EMT) has been implicated in tumorigenic processes, primarily by promoting tumor invasiveness and metastatic activity; this is a process that could be manipulated to halt or prevent brain metastasis. Studies show that miRNAs influence the function of EMT in glioblastomas. Thus, miRNA-related EMT can be exploited as a potential therapeutic target in glioblastomas. 
  • 445
  • 16 Mar 2022
Topic Review
MicroRNA in Cervical Lesions
The regulatory functions of microRNA (miRNA) are involved in all processes contributing to carcinogenesis and response to viral infections. Cervical cancer in most cases is caused by the persistence of high-risk human papillomavirus (HR-HPV) infection. While oncogenic human papillomaviruses induce aberrant expression of many cellular miRNAs, this dysregulation could be harnessed as a marker in early diagnosis of HR-HPV infection, cervical squamous intraepithelial lesions, and cancer. In recent years, growing data indicate that miRNAs show specific patterns at various stages of cervical pathology, that gives hope for the development of non-invasive diagnostic tests that take into account the heterogeneity of tumor-related changes. Due to this heterogeneity resulting in difficult to predict clinical outcomes, precise molecular tools are needed to improve the diagnostic and therapeutic process.
  • 426
  • 30 Nov 2020
Topic Review
microRNA and Adipose Tissue Function in Obesity
Obesity-induced adipose tissue dysfunction is bolstered by chronic, low-grade inflammation and impairs systemic metabolic health. Adipose tissue macrophages (ATMs) perpetuate local inflammation but are crucial to adipose tissue homeostasis, exerting heterogeneous, niche-specific functions. Diversified macrophage actions are shaped through finely regulated factors, including microRNAs, which post-transcriptionally alter macrophage activation.
  • 592
  • 05 May 2022
Topic Review
Microparticles in Vascular Inflammation
Microparticles (MPs) are extracellular vesicles with a size ranging from 0.1 to 1.0 μm. They carry cargo (mRNA, DNA, lipid and specific proteins) from originating cells and transfer to recipient cells, allowing cell-to-cell communication.
  • 771
  • 05 Nov 2020
Topic Review
Microgravity Effects on the Matrisome
Gravity is fundamental factor determining all processes of development and vital activity on Earth. During evolution, a complex mechanism of response to gravity alterations was formed in multicellular organisms. It includes the “gravisensors” in extracellular and intracellular spaces. Inside the cells, the cytoskeleton molecules are the principal gravity-sensitive structures, and outside the cells these are extracellular matrix (ECM) components. The cooperation between the intracellular and extracellular compartments is implemented through specialized protein structures, integrins. The gravity-sensitive complex is a kind of molecular hub that coordinates the functions of various tissues and organs in the gravitational environment. The functioning of this system is of particular importance under extremal conditions, such as spaceflight microgravity.
  • 515
  • 11 Apr 2022
  • Page
  • of
  • 161
ScholarVision Creations