Topic Review
Exploiting DNA Replication Stress in Breast Cancer Treatment
Proliferating cells rely on DNA replication to ensure accurate genome duplication. Cancer cells, including breast cancer cells, exhibit elevated replication stress (RS) due to the uncontrolled oncogenic activation, loss of key tumor suppressors, and defects in the DNA repair machinery. This intrinsic vulnerability provides a great opportunity for therapeutic exploitation. An increasing number of drug candidates targeting RS in breast cancer are demonstrating promising efficacy in preclinical and early clinical trials.
  • 474
  • 08 Dec 2022
Topic Review
Extracellular Matrix Environment of ccRCC
The extracellular matrix (ECM) controls fundamental properties of tumors, including growth, blood vessel investment, and invasion. The ECM defines rigidity of tumor tissue and individual ECM proteins have distinct biological effects on tumor cells. The most frequent initiating genetic mutation in ccRCC (clear cell renal cell carcinoma) inactivates the VHL gene, which plays a direct role in organizing the ECM.
  • 488
  • 15 Sep 2022
Topic Review
Extracellular ncRNAs
Non-coding RNAs (ncRNAs) are key regulators of post-transcriptional gene expression in prokaryotic and eukaryotic organisms. These molecules can interact with mRNAs or proteins, affecting a variety of cellular functions. Emerging evidence shows that intra/inter-species and trans-kingdom regulation can also be achieved with exogenous RNAs, which are exported to the extracellular medium, mainly through vesicles. In bacteria, membrane vesicles (MVs) seem to be the more common way of extracellular communication.
  • 416
  • 06 Jan 2021
Topic Review
Extracellular Traps in Disease/Protection
The first formal description of the microbicidal activity of extracellular traps (ETs) containing DNA occurred in neutrophils in 2004. Since then, ETs have been identified in different populations of cells involved in both innate and adaptive immune responses. Much of the knowledge has been obtained from in vitro or ex vivo studies; however, in vivo evaluations in experimental models and human biological materials have corroborated some of the results obtained. Two types of ETs have been described—suicidal and vital ETs, with or without the death of the producer cell. The studies showed that the same cell type may have more than one ETs formation mechanism and that different cells may have similar ETs formation mechanisms. ETs can act by controlling or promoting the mechanisms involved in the development and evolution of various infectious and non-infectious diseases, such as autoimmune, cardiovascular, thrombotic, and neoplastic diseases, among others.
  • 413
  • 09 Aug 2021
Topic Review
Extracellular Vesicle-Mediated Mitochondrial Reprogramming in Cancer
Tumors are complex systems in constant communication with their microenvironment on which they rely for growth and survival. EVs, as intercellular communicators, are involved in several hallmarks of cancers, being active players in the remodeling of the TME and priming metastatic niches to support tumor survival, progression, and invasion. Although the importance of mitochondrial state and reprogramming in cancer progression has been established, the underlying mechanisms and metabolic phenotypes are incredibly varied, and knowledge is still lacking.
  • 457
  • 07 May 2022
Topic Review
Extracellular Vesicles (EVs)
Extracellular Vesicles (EVs) represent a heterogeneous population of membranous cell-derived structures, including cargo-oriented exosomes and microvesicles. EVs are functionally associated with intercellular communication and play an essential role in multiple physiopathological conditions. Shedding of EVs is frequently increased in malignancies and their content, including proteins and nucleic acids, altered during carcinogenesis and cancer progression. EVs-mediated intercellular communication between tumor cells and between tumor and stromal cells can modulate, through cargo miRNA, the survival, progression, and drug resistance in cancer conditions. These consolidated suggestions and EVs’ stability in bodily fluids have led to extensive investigations on the potential employment of circulating EVs-derived miRNAs as tumor biomarkers and potential therapeutic vehicles. 
  • 850
  • 18 Sep 2020
Topic Review
Extracellular vesicles and Cardiovascular Diseases
Extracellular vesicles (EVs) are composed of a lipid bilayer containing transmembrane and soluble proteins. Subtypes of EVs include ectosomes (microparticles/microvesicles), exosomes, and apoptotic bodies that can be released by various tissues into biological fluids. EV cargo can modulate physiological and pathological processes in recipient cells through near- and long-distance intercellular communication. Recent studies have shown that origin, amount, and internal cargos (nucleic acids, proteins, and lipids) of EVs are variable under different pathological conditions, including cardiovascular diseases (CVD). The early detection and management of CVD reduce premature morbidity and mortality. Circulating EVs have attracted great interest as a potential biomarker for diagnostics and follow-up of CVD. 
  • 404
  • 26 Apr 2021
Topic Review
Extracellular Vesicles and Inflammatory Diseases
Inflammation is the defense mechanism of the immune system against harmful stimuli such as pathogens, toxic compounds, damaged cells, radiation etc. and characterized by tissue redness, swelling, heat generation, pain, and loss of tissue functions. Inflammation is essential in the recruitment of immune cells at the site of infection, which not only aids in the elimination of the cause, but also initiates the healing process. However, prolonged inflammation often brings about several chronic inflammatory disorders, hence, a balance between the pro- and anti-inflammatory responses is essential in order to eliminate the cause while producing least damage to the host. Growing body of evidence indicates that extracellular vesicles (EVs) play a major role in cell-cell communication via the transfer of bioactive molecules in the form of proteins, lipids, DNA, RNAs, miRNAs etc. between the cells.
  • 306
  • 03 Aug 2023
Topic Review
Extracellular Vesicles and the Breast Cancer Microenvironment
Extracellular vesicles are an important mediator of BC-TME signalling. EVs are non-replicative, lipid bilayer-delimited particles that are naturally released from cells. They have been identified in virtually every physiological fluid and are released by nearly all cell types. EV cargo consists of a number of bioactive molecules, including nucleic acids, lipids and membrane-bound and cytosolic proteins. The uptake of EVs is able to influence cell behaviour and as such, EVs are known to be important signalling particles, as well as diagnostic, predictive and prognostic biomarkers in diseases. Although EVs can be categorised in a number of ways (e.g., based on size, cargo and biological role), they are most often classified based on their biogenesis, with exosomes and microvesicles being the most commonly discussed EV subtypes. Many other subtypes of EVs have been identified, including apoptotic bodies and oncosomes, however, knowledge of their specific roles in cell–cell communication is limited. Due to the lack of consensus on biomarkers for specific subtypes of EVs, this review will use the collective term EV where the biogenesis pathway has not been demonstrated directly, in accordance with the guidelines set by the International Society for Extracellular Vesicles. 
  • 330
  • 20 Jan 2022
Topic Review
Extracellular Vesicles as Novel Treatments
Mesenchymal stem/stromal cells (MSCs) represent a promising therapy for musculoskeletal diseases. There is compelling evidence indicating that MSC effects are mainly mediated by paracrine mechanisms and in particular by the secretion of extracellular vesicles (EVs). Many studies have thus suggested that EVs may be an alternative to cell therapy with MSCs in tissue repair.
  • 426
  • 14 Oct 2021
  • Page
  • of
  • 161
Video Production Service