Topic Review
Long Non-Coding RNAs as Emerging Targets
Long non-coding RNAs (LncRNAs) are non-protein coding molecules longer than 200 nucleotides. They play essential roles in normal cell function and development, and can contribute to diseases such as cancer when dysregulated. Although lncRNAs have oncogenic or tumor-suppressive properties in lung cancer and can serve as stable biomarkers, this is still an understudied field. 
  • 304
  • 25 Jun 2023
Topic Review
Involvement of Opioid Peptides in Cancer
Peptides mediate cancer progression favoring the mitogenesis, migration, and invasion of tumor cells, promoting metastasis and anti-apoptotic mechanisms, and facilitating angiogenesis/lymphangiogenesis. Tumor cells overexpress peptide receptors, crucial targets for developing specific treatments against cancer cells using peptide receptor antagonists and promoting apoptosis in tumor cells. Opioids exert an antitumoral effect, whereas others promote tumor growth and metastasis. The involvement of opioid peptides in cancer; these peptides have enhanced the tumor growth induced by stress. MET and dynorphin (DYN) A are released from immune cells under inflammatory conditions, and the level of DYN in the cerebrospinal fluid increased in patients with cancer pain. The re-expression of the mu-opioid receptor gene in tumor cells increased the release of beta-endorphin (END) from these cells. Moreover, skin-derived beta-END mediates the fatigue induced by radiation therapy in cancer patients; plasma beta-END level augmented in rats receiving radiation but was reversed with naloxone. 
  • 304
  • 18 Jul 2023
Topic Review
Polyphenol-Based Nanoparticles
Conventional therapies for the treatment of colorectal cancer induce several side effects that impact the effectiveness of current therapies as well as the quality of patients’ life. Natural compounds with anticancer properties have gained attention as potential therapeutic agents for various cancers including colorectal cancer. However, several natural compounds such as polyphenols are facing obstacles for their use as anticancer drugs, such as intrinsic poor solubility, plasmatic instability, ineffective cellular uptake, and biological barriers. Novel approaches in precision medicine and nanomedicine are being developed. In this context, to harness the full potential of natural compounds, researchers have explored the use of nanoparticles as a drug delivery system for targeted and enhanced therapeutic efficacy as well as limited side effects. 
  • 304
  • 03 Sep 2023
Topic Review
Iron, Ferroptosis, and Head and Neck Cancer
Ferroptosis is an iron-dependent regulatory form of cell death characterized by the accumulation of intracellular reactive oxygen species and lipid peroxidation. It plays a critical role not only in promoting drug resistance in tumors, but also in shaping therapeutic approaches for various malignancies. 
  • 304
  • 20 Oct 2023
Topic Review
Role of Prion Protein in Retinal Allostasis
In the early stages of Alzheimer–Perusini’s disease (AD), individuals often experience vision-related issues such as color vision impairment, reduced contrast sensitivity, and visual acuity problems. As the disease progresses, there is a connection with glaucoma and age-related macular degeneration (AMD) leading to retinal cell death. The retina’s involvement suggests a link with the hippocampus, where most AD forms start. A thinning of the retinal nerve fiber layer (RNFL) due to the loss of retinal ganglion cells (RGCs) is seen as a potential AD diagnostic marker using electroretinography (ERG) and optical coherence tomography (OCT). Amyloid beta fragments (Aβ), found in the eye’s vitreous and aqueous humor, are also present in the cerebrospinal fluid (CSF) and accumulate in the retina. Aβ is known to cause tau hyperphosphorylation, leading to its buildup in various retinal layers.
  • 304
  • 18 Dec 2023
Topic Review
Calcitonin Gene-Related Peptide and Bone Repair
Calcitonin gene-related peptide (CGRP) has 37 amino acids. Initially, CGRP had vasodilatory and nociceptive effects. As research progressed, evidence revealed that the peripheral nervous system is closely associated with bone metabolism, osteogenesis, and bone remodeling. Thus, CGRP is the bridge between the nervous system and the skeletal muscle system. CGRP can promote osteogenesis, inhibit bone resorption, promote vascular growth, and regulate the immune microenvironment. The G protein-coupled pathway is vital for its effects, while MAPK, Hippo, NF-κB, and other pathways have signal crosstalk, affecting cell proliferation and differentiation. 
  • 303
  • 31 May 2023
Topic Review
The Communication of Senescence-Associated Secretory Phenotype
Cellular senescence is a complex cell state that can occur during physiological ageing or after exposure to stress signals, regardless of age. It is a dynamic process that continuously evolves in a context-dependent manner. Senescent cells interact with their microenvironment by producing a heterogenous and plastic secretome referred to as the senescence-associated secretory phenotype (SASP). Hence, understanding the cross-talk between SASP and the microenvironment can be challenging due to the complexity of signal exchanges.
  • 303
  • 14 Jul 2023
Topic Review
Desmosomal Genes and Arrhythmogenic Cardiomyopathy
Cardiomyopathies (CMPs) represent a significant healthcare burden and are a major cause of heart failure leading to premature death. Several CMPs are now recognized to have a strong genetic basis, including arrhythmogenic cardiomyopathy (ACM), which predisposes patients to arrhythmic episodes. 
  • 303
  • 19 Oct 2023
Topic Review
Human Immunodeficiency Virus-Related Myocardial Fibrosis
Chronic inflammation is a characteristic feature of cardiovascular diseases (CVD) and considered a contributor to diastolic dysfunction, heart failure, and sudden cardiac death. This can trigger downstream effects that result in the increased release of pro-coagulant, pro-fibrotic, and pro-inflammatory cytokines. Subsequently, this can lead to an enhanced thrombotic state (by platelet activation), endothelial dysfunction, and myocardial fibrosis. Of note, Studies have revealed that myocardial fibrosis is emerging as a mediator of human immunodeficiency virus (HIV)-related CVD. Together, such factors can eventually result in systolic and diastolic dysfunction, and an increased risk for CVD.
  • 302
  • 26 Sep 2022
Topic Review
Glutathione/Glutaredoxin in Cellular Redox Homeostasis and Signaling
The tripeptide glutathione (GSH) is the most abundant non-enzymatic antioxidant/nucleophilic molecule in cells. In addition to various metabolic reactions involving GSH and its oxidized counterpart GSSG, oxidative post-translational modification (PTM) of proteins has been a focal point of keen interest in the redox field over the last few decades. In particular, the S-glutathionylation of proteins (protein-SSG formation), i.e., mixed disulfides between GSH and protein thiols, has been studied extensively. This reversible PTM can act as a regulatory switch to interconvert inactive and active forms of proteins, thereby mediating cell signaling and redox homeostasis. The unique architecture of the GSH molecule enhances its relative abundance in cells and contributes to the glutathionyl specificity of the primary catalytic activity of the glutaredoxin enzymes, which play central roles in redox homeostasis and signaling, and in iron metabolism in eukaryotes and prokaryotes under physiological and pathophysiological conditions. The class-1 glutaredoxins are characterized as cytosolic GSH-dependent oxidoreductases that catalyze reversible protein S-glutathionylation specifically, thereby contributing to the regulation of redox signal transduction and/or the protection of protein thiols from irreversible oxidation.
  • 301
  • 08 Aug 2023
  • Page
  • of
  • 161
ScholarVision Creations