Topic Review
Cytokine Storm Syndrome in SARS-CoV-2
Cytokine storm syndrome is a cascade of escalated immune responses disposing the immune system to exhaustion, which might ultimately result in organ failure and fatal respiratory distress. Infection with severe acute respiratory syndrome-coronavirus-2 can result in uncontrolled production of cytokines and eventually the development of cytokine storm syndrome. Mast cells may react to viruses in collaboration with other cells and lung autopsy findings from patients that died from the coronavirus disease that emerged in 2019 (COVID-19) showed accumulation of mast cells in the lungs that was thought to be the cause of pulmonary edema, inflammation, and thrombosis. 
  • 621
  • 03 Aug 2021
Topic Review
FAAH inhibitor URB597
Since the inhibition of fatty acid amide hydrolase (FAAH), the main catabolic enzyme of anandamide (AEA), may provide beneficial effects in mice model of Alzheimer’s disease (AD)-like pathology, we aimed at determining whether the FAAH inhibitor URB597 might target microglia polarization and alter the cytoskeleton reorganization induced by the amyloid-β peptide (Aβ). The morphological evaluation showed that Aβ treatment increased the surface area of BV-2 cells, which acquired a flat and polygonal morphology. URB597 treatment partially rescued the control phenotype of BV-2 cells when co-incubated with Aβ. Moreover, URB597 reduced both the increase of Rho protein activation in Aβ-treated BV-2 cells and the Aβ-induced migration of BV-2 cells, while an increase of Cdc42 protein activation was observed in all samples. URB597 also increased the number of BV-2 cells involved in phagocytosis. URB597 treatment induced the polarization of microglial cells towards an anti-inflammatory phenotype, as demonstrated by the decreased expression of iNOS and pro-inflammatory cytokines along with the parallel increase of Arg-1 and anti-inflammatory cytokines. Taken together, these data suggest that FAAH inhibition promotes cytoskeleton reorganization, regulates phagocytosis and cell migration processes, thus driving microglial polarization towards an anti-inflammatory phenotype. 
  • 570
  • 02 Aug 2021
Topic Review
MicroRNAs in Prion Diseases
Prion is an atypical etiological agent composed solely of a misfolded protein—(proteinaceous infectious particle), which affects mammals causing a group of slow, progressive, neurodegenerative, lethal, untreatable disorders known as transmissible spongiform encephalopathies (TSEs).
  • 370
  • 30 Jul 2021
Topic Review
TRIM22. A Multitasking Antiviral Factor
Viral invasion of target cells triggers an immediate intracellular host defense system aimed at preventing further propagation of the virus. Viral genomes or early products of viral replication are sensed by a number of pattern recognition receptors, leading to the synthesis and production of type I interferons (IFNs) that, in turn, activate a cascade of IFN-stimulated genes (ISGs) with antiviral functions. Among these, several members of the tripartite motif (TRIM) family are antiviral executors.
  • 500
  • 29 Jul 2021
Topic Review
Ribosomal Gene Loci
Nucleoli form around actively transcribed ribosomal RNA (rRNA) genes (rDNA), and the morphology and location of nucleolus-associated genomic domains (NADs) are linked to the RNA Polymerase I (Pol I) transcription status. The number of rDNA repeats (and the proportion of actively transcribed rRNA genes) is variable between cell types, individuals and disease state. Substantial changes in nucleolar morphology and size accompanied by concomitant changes in the Pol I transcription rate have long been documented during normal cell cycle progression, development and malignant transformation. 
  • 665
  • 29 Jul 2021
Topic Review
Cd34+ Stromal Cells/Telocytes
CD34+ stromal cells/telocytes (CD34+SCs/TCs) are an important interstitial, perivascular, peri/endoneurial and periadnexal cellular component in the dermis and hypodermis (subcutaneous adipose tissue) of the skin. Most CD34+ stromal cells are known to correspond to telocytes, a new cellular type identified by electron microscopy.
  • 705
  • 29 Jul 2021
Topic Review
Neuropeptide B
Neuropeptide B (NPB) is a peptide hormone that was initially described in 2002. In humans, the biological effects of NPB depend on the activation of two G protein-coupled receptors, NPBWR1 (GPR7) and NPBWR2 (GPR8), and, in rodents, NPBWR1. NPB and its receptors are expressed in the central nervous system (CNS) and in peripheral tissues. NPB is also present in the circulation. In the CNS, NPB modulates appetite, reproduction, pain, anxiety, and emotions. In the peripheral tissues, NPB controls secretion of adrenal hormones, pancreatic beta cells, and various functions of adipose tissue. Experimental downregulation of either NPB or NPBWR1 leads to adiposity. 
  • 510
  • 29 Jul 2021
Topic Review
GH/IGF Axis
The GH/IGF axis is a major regulator of bone formation and resorption and is essential to the achievement of normal skeleton growth and homeostasis.
  • 454
  • 28 Jul 2021
Topic Review
MicroRNAs in Cholangiocarcinoma
Cholangiocarcinoma (CCA), an aggressive malignancy, is typically diagnosed at an advanced stage. It is associated with dismal 5-year postoperative survival rates, generating an urgent need for prognostic and diagnostic biomarkers. MicroRNAs (miRNAs) are a class of non-coding RNAs that are associated with cancer regulation, including modulation of cell cycle progression, apoptosis, metastasis, angiogenesis, autophagy, therapy resistance, and epithelial-mesenchymal transition.
  • 316
  • 27 Jul 2021
Topic Review
Cristae Dynamics
Recent studies using fluorescence super-resolution (SR) microscopy techniques showed unexpected fast movement of cristae and CJs, collectively termed as cristae dynamics. Cristae undergo continuous cycles of membrane remodelling often assisted by the dynamics of CJs in a MICOS-dependent manner, which led to the proposal of the ‘Cristae Fission and Fusion’ (CriFF) model. The field of cristae dynamics is still in infancy, future experiments could provide better insights about the consequences of the reduced cristae or CJ dynamics in the knockouts (KOs) of the MICOS subunits and their relevance in many pathologies associated with the MICOS complex.
  • 628
  • 27 Jul 2021
  • Page
  • of
  • 161
Video Production Service