Topic Review
Adipogenesis
Adipose tissue is contemplated as a dynamic organ that plays key roles in the human body. Adipogenesis is the process by which adipocytes develop from adipose-derived stem cells to form the adipose tissue. Adipose-derived stem cells’ differentiation serves well beyond the simple goal of producing new adipocytes. Indeed, with the current immense biotechnological advances, the most critical role of adipose-derived stem cells remains their tremendous potential in the field of regenerative medicine. This entry focuses on examining the physiological importance of adipogenesis, the current approaches that are employed to model this tightly controlled phenomenon, and the crucial role of adipogenesis in elucidating the pathophysiology and potential treatment modalities of human diseases. The future of adipogenesis is centered around its crucial role in regenerative and personalized medicine.
  • 1.6K
  • 16 Nov 2020
Topic Review
CD4 T Helper Cells
CD4 T helper cells, including Th1, Th2, Th17, Treg and Tfh, play a central role in orchestrating adaptive immune responses.
  • 1.5K
  • 16 Nov 2020
Topic Review
Hallmarks and Significance of Apoptosis
Apoptosis is the elimination of functionally non-essential, neoplastic, and infected cells via the mitochondrial pathway or death receptor pathway. The process of apoptosis is highly regulated through membrane channels and apoptogenic proteins. Apoptosis maintains cellular balance within the human body through cell cycle progression. Loss of apoptosis control prolongs cancer cell survival and allows the accumulation of mutations that can promote angiogenesis, promote cell proliferation, disrupt differentiation, and increase invasiveness during tumor progression. The apoptotic pathway has been extensively studied as a potential drug target in cancer treatment. 
  • 1.5K
  • 14 Feb 2023
Topic Review
AP-1 Transcription Factors in Myeloma
Multiple myeloma (MM) is an incurable hematologic malignancy characterized by the clonal expansion of malignant plasma cells within the bone marrow. Activator Protein-1 (AP-1) transcription factors (TFs), comprised of the JUN, FOS, ATF and MAF multigene families, are implicated in a plethora of physiologic processes and tumorigenesis including plasma cell differentiation and MM pathogenesis. Depending on the genetic background, the tumor stage, and cues of the tumor microenvironment, specific dimeric AP-1 complexes are formed. For example, AP-1 complexes containing Fra-1, Fra-2 and B-ATF play central roles in the transcriptional control of B cell development and plasma cell differentiation, while dysregulation of AP-1 family members c-Maf, c-Jun, and JunB is associated with MM cell proliferation, survival, drug resistance, bone marrow angiogenesis, and bone disease. The present review article summarizes our up-to-date knowledge on the role of AP-1 family members in plasma cell differentiation and MM pathophysiology. Moreover, it discusses novel, rationally derived approaches to therapeutically target AP-1 TFs, including protein-protein and protein-DNA binding inhibitors, epigenetic modifiers and natural products.
  • 1.5K
  • 25 May 2021
Topic Review
Nanobodies
Nanobodies are highly water-soluble and stable, have high specificity, and can bind their targets with very high affinity, often in the low nanomolar range. 
  • 1.5K
  • 10 May 2021
Topic Review
List of R1a Frequency by Population
Haplogroup R1a is one of the major classifications (called clades) of Y-chromosome types found in human male lines. It is widespread all across Eurasia. Many sample studies therefore carry information on the incidence of R1a and/or its subclassifications, in particular the dominant branching line represented by the haplogroups R1a1 and R1a1a. The table below collates information from a number of such sample studies, with incidence frequencies in sample data reported as percentages, along with the associated sample sizes.
  • 1.5K
  • 09 Nov 2022
Topic Review
LncRNA-Protein Interactions
LncRNA can act as gene regulators, and like other epigenetic mechanisms are involved in numerous biological processes. They achieve their regulatory function with their ability to interact with a wide range of biological molecules, such as other nucleic acids and proteins. These lncRNA-protein interactions (LPI) are involved in many biological pathways including development and disease. A variety of computational LPI predictors exist, each applying different strategies to achieve their goals, and are dependent on a few biological databases containing subsets of experimentally validated LPI. Most modern lncRNA-protein interaction (LPI) prediction algorithms use machine learning approaches, where algorithms are trained on large datasets with attributes of interest.
  • 1.5K
  • 05 Jul 2021
Topic Review
The NLRP3 Inflammasome
As a critical component of the innate immune system, the nucleotide-binding and oligomerization domain, leucine-rich repeat, and pyrin domain-containing 3 (NLRP3) inflammasome can be activated by various endogenous and exogenous danger signals. Activation of this cytosolic multiprotein complex triggers the release of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 and initiates pyroptosis, an inflammatory form of programmed cell death. The NLRP3 inflammasome fuels both chronic and acute inflammatory conditions and is critical in the emergence of inflammaging. Recent advances have highlighted that various metabolic pathways converge as potent regulators of the NLRP3 inflammasome. This review focuses on our current understanding of the metabolic regulation of the NLRP3 inflammasome activation, and the contribution of the NLRP3 inflammasome to inflammaging.
  • 1.5K
  • 24 Aug 2020
Topic Review
Bile Acid Signaling
Bile acids are digestive agents synthesized in the liver and released into the gastrointestinal track during normal physiological conditions to aid in the emulsification of lipids and fat-soluble vitamins. These bile acids are highly regulated via enterohepatic circulation, a process which minimizes bile acid loss through a wide network of organs and bile acid transporters. Beyond this, bile acids and the activation of bile acid receptors has been observed in extrahepatic tissues, in particular the central nervous system. Certain bile acids, through the use of specific bile acid transporters, can also gain entry into the brain via the blood brain barrier. Furthermore, there has been an increase in recent literature highlighting bile acids and the presence of bile acid signaling in the brain and neural cells. This entry is a current overview of these topics.
  • 1.5K
  • 21 Aug 2020
Topic Review
Suture Mesenchymal Stem Cells
Suture mesenchymal stem cells (SuSCs), a heterogeneous stem cell population, belong to mesenchymal stem cells (MSCs) or skeletal stem cells (SSCs), with the ability to self-renew and undergo multi-lineage differentiation. Unlike the well-established perivascular niche of SSCs in the long bone, stem cells of the cranial bone are generally located and confined within the cranial suture mesenchyme, subsequently defined as SuSCs. In the long bone, SSCs play an essential role in plenty of physiological processes, such as growth and development, life-long homeostasis, and fracture healing. Similarly, as the major stem cell population of cranial bones, the physiological significance of SuSCs is undoubted and self-evident. 
  • 1.5K
  • 22 Sep 2021
  • Page
  • of
  • 161
Video Production Service