Topic Review
Kidney–Gut Axis as Target for Chronic Kidney Disease
A well-balanced diet is integral for overall health, aiding in managing key risk factors for kidney damage like hypertension while supplying necessary precursors for metabolite production. Dietary choices directly influence the composition and metabolic patterns of the gut microbiota, showing promise as therapeutic tools for addressing various health conditions, including chronic kidney diseases (CKD). CKD pathogenesis involves a decline in the glomerular filtration rate and the retention of nitrogen waste, fostering gut dysbiosis and the excessive production of bacterial metabolites. These metabolites act as uremic toxins, contributing to inflammation, oxidative stress, and tissue remodeling in the kidneys. Dietary interventions hold significance in reducing oxidative stress and inflammation, potentially slowing CKD progression. Functional ingredients, nutrients, and nephroprotective phytoconstituents could modulate inflammatory pathways or impact the gut mucosa. The “gut–kidney axis” underscores the impact of gut microbes and their metabolites on health and disease, with dysbiosis serving as a triggering event in several diseases, including CKD. 
  • 183
  • 31 Jan 2024
Topic Review
Cells Respond to Mechanical Cues of Extracellular Matrix
Extracellular biophysical properties have particular implications for a wide spectrum of cellular behaviors and functions, including growth, motility, differentiation, apoptosis, gene expression, cell–matrix and cell–cell adhesion, and signal transduction including mechanotransduction. Cells not only react to unambiguously mechanical cues from the extracellular matrix (ECM), but can occasionally manipulate the mechanical features of the matrix in parallel with biological characteristics, thus interfering with downstream matrix-based cues in both physiological and pathological processes. Bidirectional interactions between cells and (bio)materials in vitro can alter cell phenotype and mechanotransduction, as well as ECM structure, intentionally or unintentionally. Interactions between cell and matrix mechanics in vivo are of particular importance in a variety of diseases, including primarily cancer. 
  • 114
  • 31 Jan 2024
Topic Review
TRPV4 and Calcium Oscillations in Tissue Repair
The transient receptor potential vanilloid 4 (TRPV4) specifically functions as a mechanosensitive ion channel and is responsible for conveying changes in physical stimuli such as mechanical stress, osmotic pressure, and temperature. TRPV4 enables the entry of cation ions, particularly calcium ions, into the cell. Activation of TRPV4 channels initiates calcium oscillations, which trigger intracellular signaling pathways involved in a plethora of cellular processes, including tissue repair. Widely expressed throughout the body, TRPV4 can be activated by a wide array of physicochemical stimuli, thus contributing to sensory and physiological functions in multiple organs.
  • 100
  • 30 Jan 2024
Topic Review
SWI/SNF Complex in Vascular Smooth Muscle Cells
Mature vascular smooth muscle cells (VSMC) exhibit a remarkable degree of plasticity, a characteristic that has intrigued cardiovascular researchers for decades. It has become increasingly evident that the chromatin remodeler SWItch/Sucrose Non-Fermentable (SWI/SNF) complex plays a pivotal role in orchestrating chromatin conformation, which is critical for gene regulation.
  • 192
  • 30 Jan 2024
Topic Review
Extracellular Vesicles in the Central Nervous System
Communication in the central nervous system (CNS) is fundamental for different biological functions including brain development, homeostasis preservation, and neural circuit formation. Indeed, the crosstalk between glia and neurons is critical in the CNS for a variety of biological functions, such as brain development, neural circuit maturation, and homeostasis maintenance. Glia cells are involved in different processes including inflammatory responses to infections or diseases, neurotrophic support, and synaptic remodelling and pruning. In addition to the traditional direct cell-to-cell contact, glial cell can also communicate with neurons through the paracrine action of secreted molecules, or by the release and reception of extracellular vesicles (EVs). EVs, which are subdivided into three subtypes: microvesicles, exosomes, and apoptotic bodies, are a major constituent of the cell secretome. EVs have the ability to circulate in the extracellular body fluid and modulate several biological processes and their associated pathways. EVs cross the blood–brain barrier (BBB) bidirectionally from the bloodstream to the brain parenchyma and vice versa. They play an important role in brain–periphery communication in physiology and pathophysiology. According to the current literature, although EVs cross the BBB, it is unclear how, where, and when they can overcome this tightly controlled cellular barrier.
  • 118
  • 30 Jan 2024
Topic Review
P2X7R and Microglia
P2X receptors are a family of seven ATP-gated ion channels that trigger physiological and pathophysiological responses in various cells. Five of the family members are sensitive to low concentrations of extracellular ATP, while the P2X6 receptor has an unknown affinity. The last subtype, the P2X7 receptor, is unique in requiring millimolar concentrations to activate in humans fully. This low sensitivity imparts the agonist with the ability to act as a damage-associated molecular pattern that triggers the innate immune response in response to the elevated extracellular ATP levels accompanying inflammation and tissue damage.
  • 165
  • 29 Jan 2024
Topic Review
Photodynamic Therapy: Principles and Reaction Mechanisms
Photodynamic therapy (PDT) is a two-stage treatment that implies the use of light energy, oxygen, and light-activated compounds (photosensitizers) to elicit cancerous and precancerous cell death after light activation (phototoxicity). The biophysical, bioengineering aspects and its combinations with other strategies are highlighted herein, both conceptually and as they are currently applied clinically. Advancements of PDT with the use of nanotechnology are further explored, including quantum dots as innovative photosensitizers or energy donors as well as the combination of PDT with radiotherapy and immunotherapy as future promising cancer treatments. Finally, the potential significance of organoids as physiologically relevant models for PDT has been emphasized.
  • 208
  • 26 Jan 2024
Topic Review
Organoids and iPSC-Based Models
Organoids are self-organized, three-dimensional structures derived from stem cells that can mimic the structure and physiology of human organs. Patient-specific induced pluripotent stem cells (iPSCs) and 3D organoid model systems allow cells to be analyzed in a controlled environment to simulate the characteristics of a given disease by modeling the underlying pathophysiology. 
  • 142
  • 26 Jan 2024
Topic Review
Enteric Glial Cells and Their Involvement in PD
The brain–gut axis has been identified as an important contributor to the physiopathology of Parkinson’s disease (PD).  In this pathology, inflammation is thought to be driven by the damage caused by aggregation of α-synuclein in the brain. Activation and reactive gliosis are associated to the neurodegeneration produced by Parkinson’s disease in the enteric nervous system.
  • 89
  • 26 Jan 2024
Topic Review
Role of Midkine in Hepatocellular Carcinoma
Midkine (MDK) is a multifunctional secreted protein that can act as a cytokine or growth factor regulating multiple signaling pathways and being implicated in fundamental cellular processes, such as survival, proliferation, and migration. Although its expression in normal adult tissues is barely detectable, MDK serum levels are found to be elevated in several types of cancer, including hepatocellular carcinoma (HCC). 
  • 99
  • 25 Jan 2024
  • Page
  • of
  • 161
Video Production Service