Topic Review
BRCA1 in Centrosome Regulation
Breast cancer gene 1 (BRCA1) is a tumor suppressor associated with hereditary breast and ovarian cancer and forms a heterodimer with BRCA1-associated RING domain protein 1 (BARD1). Centrosomes are the major microtubule-organizing centers in animal cells and are critical for the formation of a bipolar mitotic spindle. BRCA1 and BARD1 localize to the centrosome during the cell cycle, and the BRCA1/BARD1 dimer ubiquitinates centrosomal proteins to regulate centrosome function.
  • 665
  • 03 Aug 2020
Topic Review
The Guanyl Radical
Guanyl radical or neutral guanine radical G(-H)• results from the loss of a H-atom or an electron/proton (e–/H+) couple from the guanine structures (G). Guanyl radical G(-H)• exists in two tautomeric forms and its role in single- and double-stranded oligonucleotides, in DNA and G-quadruplex, attracted considerable attention since directly connected to the damage of genetic material and its biological consequences. The emerging picture is still incomplete and extrapolation of its chemistry from nucleosides to more complex environment like DNA can be misleading.
  • 665
  • 20 Jul 2021
Topic Review
Mitochondrial Metal Ion Transport
The homeostasis of mitochondrial metal ions plays an important role in maintaining mitochondria and cell functions and regulating multiple diseases. In particular, channels and transporters for transporting mitochondrial metal ions are very critical, which can be used as potential targets to treat neurodegeneration, cardiovascular diseases, cancer, diabetes and other metabolic diseases. This review summarizes the current research on several types of mitochondrial metal ion channels/transporters and their functions in cell metabolism and diseases, providing strong evidence and therapeutic strategies for further insights into related diseases.
  • 663
  • 23 Jul 2021
Topic Review
TRPC Channels
Transient receptor potential canonical (TRPC) channels are ubiquitously expressed in excitable and non-excitable cardiac cells where they sense and respond to a wide variety of physical and chemical stimuli. As other TRP channels, TRPC channels may form homo or heterotetrameric ion channels, and they can associate with other membrane receptors and ion channels to regulate intracellular calcium concentration. Dysfunctions of TRPC channels are involved in many types of cardiovascular diseases. Significant increase in the expression of different TRPC isoforms was observed in different animal models of heart infarcts and in vitro experimental models of ischemia and reperfusion. TRPC channel-mediated increase of the intracellular Ca2+ concentration seems to be required for the activation of the signaling pathway that plays minor roles in the healthy heart, but they are more relevant for cardiac responses to ischemia, such as the activation of different factors of transcription and cardiac hypertrophy, fibrosis, and angiogenesis.
  • 662
  • 26 May 2021
Topic Review
Hematopoietic Stem Cells (HSCs)
Hematopoietic stem cells (HSCs) and their offspring, the hematopoietic progenitor cells (HPCs), are highly sociable. Their capacity to interact with bone marrow niche cells and respond to environmental cytokines orchestrates the generation of the different types of blood and immune cells. 
  • 661
  • 28 May 2021
Topic Review
MiR-615
miR-615, a miRNA highly conserved across eutherian mammals. It is involved not only during embryogenesis in the regulation of growth and development, for instance during osteogenesis and angiogenesis, but also in the regulation of cell growth and the proliferation and migration of cells, acting as a tumor suppressor or tumor promoter. It, therefore, serves as a biomarker for several types of cancer and recently has also been found to be involved in reparative processes and neural repair.
  • 661
  • 27 Oct 2020
Topic Review
Gallic Acid Activates KDM2A
KDM2A is a member of one group of α-ketoglutarate-dependent oxygenases. KDM2A in the rDNA promoter is activated by nutrient starvation, to reduce rRNA transcription and cell proliferation. While gallic acid functions as an antioxidant, gallic acid autoxidation also produces significant levels of reactive oxygen species (ROS). Gallic acid activates KDM2A to reduce rRNA transcription and cell proliferation in breast cancer MCF-7 cells but not in non-tumorous MCS10A cells. The activation of KDM2A by gallic acid depends on ROS production and AMPK activation.
  • 660
  • 26 Oct 2020
Topic Review
Keep Calm and Carry on with Extra Centrosomes
Aberrations in the centrosome number and structure can readily be detected at all stages of tumor progression and are considered hallmarks of cancer. Centrosome anomalies are closely linked to chromosome instability and, therefore, are proposed to be one of the driving events of tumor formation and progression. This concept, first posited by Boveri over 100 years ago, has been an area of interest to cancer researchers.
  • 659
  • 10 Feb 2022
Topic Review
Asymmetric Cell Division
Asymmetric cell division (ACD) of neural stem cells and progenitors not only renews the stem cell population but also ensures the normal development of the nervous system, producing various types of neurons with different shapes and functions in the brain. One major mechanism to achieve ACD is the asymmetric localization and uneven segregation of intracellular proteins and organelles into sibling cells. Recent studies have demonstrated that liquid-liquid phase separation (LLPS) provides a potential mechanism for the formation of membrane-less biomolecular condensates that are asymmetrically distributed on limited membrane regions. Moreover, mechanical forces have emerged as pivotal regulators of asymmetric neural stem cell division by generating sibling cell size asymmetry. In this review, we will summarize recent discoveries of ACD mechanisms driven by LLPS and mechanical forces.
  • 659
  • 03 Nov 2021
Topic Review
Rabbit Melanocytes
Melanogenesis is a complex process of the synthesis and storage of melanin initiated by tyrosinase, which is synthesized by melanocytes, after it enters the melanosomes. Melanogenesis plays an important role in the formation of different coat colors in mammals. There are two distinct types of melanin pigments: eumelanin and pheomelanin, the proportions of which determine the coat color of the animal.
  • 659
  • 29 Nov 2021
  • Page
  • of
  • 161
Video Production Service