Topic Review
Somatic Cell Sources for Reprogramming
Induced pluripotent stem cells (iPSCs) were first generated by Yamanaka in 2006, revolutionizing research by overcoming limitations imposed by the use of embryonic stem cells. In terms of the conservation of endangered species, iPSC technology presents itself as a viable alternative for the manipulation of target genetics without compromising specimens.
  • 154
  • 01 Mar 2024
Topic Review
Sodium-Glucose Cotransporter-2 Inhibitors
Recent randomized controlled trials (RCTs) tested the efficacy of sodium-glucose cotransporter-2 (SGLT-2) inhibitors to specifically treat nonalcoholic fatty liver disease (NAFLD). We systematically searched three large electronic databases (up to 31 October 2020) for identifying placebo-controlled or active-controlled RCTs that used different SGLT-2 inhibitors (dapagliflozin, empagliflozin, ipragliflozin or canagliflozin) for treatment of NAFLD.
  • 415
  • 11 Jan 2021
Topic Review
Sodium Glucose Co-transporter 2 Inhibitors
Sodium glucose co-transporter 2 (SGLT2) inhibitors are effective antihyperglycemic agents by inhibiting glucose reabsorption in the proximal tubule of the kidney. 
  • 2.1K
  • 09 Mar 2021
Topic Review
SMIFH2 Targets
The discovery of small molecule inhibitor of formin homology 2 domains (SMIFH2) has provided a unique tool to explore formins’ functions from the molecular to the organismal scales. Due to the important pathophysiological roles of formins in eukaryotes, SMIFH2 has been widely used.
  • 202
  • 02 Jun 2023
Topic Review
Small-Molecule Inhibitors Targeting Proteasome-Associated Deubiquitinases
The 26S proteasome is the principal protease for regulated intracellular proteolysis. This multi-subunit complex is also pivotal for clearance of harmful proteins that are produced throughout the lifetime of eukaryotes. Recent structural and kinetic studies have revealed a multitude of conformational states of the proteasome in substrate-free and substrate-engaged forms. These conformational transitions demonstrate that proteasome is a highly dynamic machinery during substrate processing that can be also controlled by a number of proteasome-associated factors. Essentially, three distinct family of deubiquitinases–USP14, RPN11, and UCH37–are associated with the 19S regulatory particle of human proteasome. USP14 and UCH37 are capable of editing ubiquitin conjugates during the process of their dynamic engagement into the proteasome prior to the catalytic commitment. In contrast, RPN11-mediated deubiquitination is directly coupled to substrate degradation by sensing the proteasome’s conformational switch into the commitment steps. 
  • 482
  • 23 Jun 2021
Topic Review
Small Ras GTPases in Fungi
Monomeric GTPases, which belong to the Ras superfamily, are small proteins involved in many biological processes. The most studied families are Ras, Rho, Rab, Ran, Arf, and Miro, and recently, a new family named Big Ras GTPases was reported. As a general rule, the proteins of all families have five characteristic motifs (G1–G5), and some specific features for each family have been described. The main functions described for monomeric GTPases in fungi include morphogenesis, secondary metabolism, vesicle trafficking, and virulence.
  • 681
  • 21 Jun 2021
Topic Review
Small Leucine-Rich Proteoglycan Impact on Cancer Pathogenesis
Cancer is a complex disease in which cells and their environment are altered. A tumor microenvironment contains tumor cells, normal tissue cells, blood vessels, cells of the immune system, stromal cells, and the extracellular matrix (ECM). The small leucine-rich proteoglycans (SLRPs) are molecules that consist of a protein core and glycosaminoglycan chains. SLRPs are released by the cells into the surrounding matrix. These biomolecules can react with molecules on the cell surface and secreted biomolecules and modify signaling, which regulates cell behavior. Their expression changes during cancer development, contributing to cancer growth and metastases.
  • 235
  • 13 Jul 2023
Topic Review
SLC26A9 in Cystic Fibrosis Lung Disease
SLC26A9 belongs to the solute carrier family 26 (SLC26), which comprises membrane proteins related to the phylogenetically older SLC26-SulP gene family. On the basis of different preliminary findings, including the phenotype of SlC26A9-deficient mice and its possible role as a gene modifier of the human phenotype and treatment response, SLC26A9 has emerged as one of the most interesting alternative targets for the treatment of cystic fibrosis (CF).
  • 313
  • 18 Feb 2022
Topic Review
Skin Aging and Cellular Senescence
Skin aging is a result of two cumulative and overlaying mechanisms denominated as intrinsic and extrinsic aging. The process of intrinsic or chronological aging affects all tissues and organs of the body, is due to the passage of time, and is influenced by genetic background. However, the skin is continuously exposed to environmental and lifestyle factors such as sunlight, pollution, cigarette smoke, and dietary habits. These factors, collectively denominated the skin exposome, are the major causes of the process of extrinsic skin aging. In addition, cellular senescence and the accumulation of senescent cells in the skin is considered as a hallmark of aging. Senescent cells contribute to the decline of tissue function and lead to age-related changes and pathologies.
  • 718
  • 19 Jul 2022
Topic Review
Skeletal Muscle Extracellular Matrix
The skeletal muscle provides movement and support to the skeleton, controls body temperature, and regulates the glucose level within the body. This is the core tissue of insulin-mediated glucose uptake via glucose transporter type 4 (GLUT4). The extracellular matrix (ECM) provides a scaffold for cells, controlling biological processes, and providing structural as well as mechanical support to surrounding cells. Disruption of ECM homeostasis results in several pathological conditions. Various ECM components are typically found to be augmented in the skeletal muscle of obese and/or diabetic humans. A better understanding of the importance of skeletal muscle ECM remodeling, integrin signaling, and other factors that regulate insulin activity may help in the development of novel therapeutics for managing diabetes and other metabolic disorders.
  • 608
  • 09 Sep 2021
  • Page
  • of
  • 161
Video Production Service