Topic Review
Crucial Mediators of Adipocyte Intercellular Communication
Cancer research has prioritized the study of the tumor microenvironment (TME) as a crucial area of investigation. Understanding the communication between tumor cells and the various cell types within the TME has become a focal point. Bidirectional communication processes between these cells support cellular transformation, as well as the survival, invasion, and metastatic dissemination of tumor cells. Extracellular vesicles are lipid bilayer structures secreted by cells that emerge as important mediators of this cell-to-cell communication. EVs transfer their molecular cargo, including proteins and nucleic acids, and particularly microRNAs, which play critical roles in intercellular communication. Adipocytes, a significant component of the breast stroma, exhibit high EV secretory activity, which can then modulate metabolic processes, promoting the growth, proliferation, and migration of tumor cells.
  • 195
  • 31 Aug 2023
Topic Review
Mitochondrial Dysfunction in Repeat Expansion Diseases
Repeat expansion diseases are a group of neuromuscular and neurodegenerative disorders characterized by expansions of several successive repeated DNA sequences. More than 50 repeat expansion diseases have been described. These disorders involve diverse pathogenic mechanisms, including loss-of-function mechanisms, toxicity associated with repeat RNA, or repeat-associated non-ATG (RAN) products, resulting in impairments of cellular processes and damaged organelles. Mitochondria, double membrane organelles, play a crucial role in cell energy production, metabolic processes, calcium regulation, redox balance, and apoptosis regulation.
  • 219
  • 29 Aug 2023
Topic Review
Implications of Phosphatase and Tensin Homolog in NSCLC
Lung cancer remains one of the major human malignancies affecting both men and women worldwide, with non-small cell lung cancer (NSCLC) being the most prevalent type. Multiple mechanisms have been identified that favor tumor growth as well as impede the efficacy of therapeutic regimens in lung cancer patients. Among tumor suppressor genes that play critical roles in regulating cancer growth, the phosphatase and tensin homolog (PTEN) constitutes one of the important family members implicated in controlling various functional activities of tumor cells, including cell proliferation, apoptosis, angiogenesis, and metastasis.
  • 254
  • 29 Aug 2023
Topic Review
Mechanisms of Modulation of Mitochondrial Architecture
Mitochondrial architecture is determined by several components, which include the following: mitochondrial distribution in the cytosol, supported by interaction with the cytoskeleton; events of fission and fusion, mediated by mitochondrial dynamics proteins; mitochondrial network contact with other organelles (e.g., endoplasmic reticulum (ER), lipid droplets (LDs), lysosomes, and plasma membrane); and the lipid composition of mitochondrial membranes.
  • 270
  • 28 Aug 2023
Topic Review
Mechanisms of Microglia Proliferation in a Rat Model
Although microglia exist as a minor glial cell type in the normal state of the brain, they increase in number in response to various disorders and insults. However, it remains unclear whether microglia proliferate in the affected area, and the mechanism of the proliferation has long attracted the attention of researchers.
  • 341
  • 28 Aug 2023
Topic Review
Ferrous Neuroglobin and Ferric Cytochrome c
Neuroglobin, which is a heme protein from the globin family that is predominantly expressed in nervous tissue, can promote a neuronal survivor. However, the molecular mechanisms underlying the neuroprotective function of Ngb remain poorly understood to this day. The interactions between neuroglobin and mitochondrial cytochrome c may serve as at least one of the mechanisms of neuroglobin-mediated neuroprotection.
  • 200
  • 28 Aug 2023
Topic Review
TRP Channels on the Progression of Liver Diseases
The liver serves as a vital organ with a primary metabolic function. In addition, it possesses the ability to synthesize and decompose proteins, regulate overall blood volume, eliminate toxins, and regulate immunity, all of which are crucial for maintaining normal physiological activities in the human body. 
  • 529
  • 25 Aug 2023
Topic Review
Roles of Non-Coding RNA in Alzheimer’s Disease Pathophysiology
Alzheimer’s disease (AD) is a chronic neurodegenerative disorder that is accompanied by deficits in memory and cognitive functions. The disease is pathologically characterised by the accumulation and aggregation of an extracellular peptide referred to as amyloid-β (Aβ) in the form of amyloid plaques and the intracellular aggregation of a hyperphosphorelated protein tau in the form of neurofibrillary tangles (NFTs) that cause neuroinflammation, synaptic dysfunction, and oxidative stress. The search for pathomechanisms leading to disease onset and progression has identified many key players that include genetic, epigenetic, behavioural, and environmental factors, which lend support to the fact that this is a multi-faceted disease where failure in various systems contributes to disease onset and progression. Although the vast majority of individuals present with the sporadic (non-genetic) form of the disease, dysfunctions in numerous protein-coding and non-coding genes have been implicated in mechanisms contributing to the disease.
  • 305
  • 25 Aug 2023
Topic Review
RECQ5 Functions in DNA Repair and Transcription
RECQ5, a member of the conserved RECQ helicase family, is the sole human RECQ homolog that has not been linked to a hereditary developmental syndrome. Nonetheless, dysregulation of RECQ5 has emerged as a significant clinical concern, being linked to cancer predisposition, cardiovascular disease, and inflammation. In cells, RECQ5 assumes a crucial role in the regulation of DNA repair pathways, particularly in the repair of DNA double-strand breaks and inter-strand DNA crosslinks. Moreover, RECQ5 exhibits a capacity to modulate gene expression by interacting with transcription machineries and their co-regulatory proteins, thus safeguarding against transcription-induced DNA damage.
  • 198
  • 24 Aug 2023
Topic Review
Plexins in Cancer Cell Proliferation, Migration, and Invasivity
Plexins are a family of nine single-pass transmembrane receptors with a conserved GTPase activating protein (GAP) domain. The plexin family is divided into four subfamilies: Type-A, type-B, type-C, and type-D plexins. Plexins function as receptors for axon guidance factors of the semaphorin family. The semaphorin gene family contains 22 genes that are divided into eight subclasses of which subclasses three to seven represent vertebrate semaphorins. The plexins and their semaphorin ligands have important roles as regulators of angiogenesis, cancer proliferation, and metastasis. Class 3 semaphorins, with the exception of sema3E, are the only semaphorins that do not bind directly to plexins. In order to transduce their signals, they bind instead to complexes consisting of receptors of the neuropilin family and various plexins. Some plexins also form complexes with tyrosine-kinase receptors such as the epidermal growth factor receptor ErbB2, the mesenchymal epithelial transition factor receptor (MET), and the Vascular endothelial growth factor receptor 2 (VEGFR2) and, as a result, can modulate cell proliferation and tumor progression. 
  • 424
  • 24 Aug 2023
  • Page
  • of
  • 161
Video Production Service