Topic Review
Synthesis of 3,4-Dihydropyrimidin(thio)one Containing Scaffold
The interest in 3,4-dihydropyrimidine-2(1H)-(thio)ones is increasing every day, mainly due to their paramount biological relevance. The Biginelli reaction is the classical approach to reaching these scaffolds, although the product diversity suffers from some limitations. In order to overcome these restrictions, two main approaches have been devised. The first one involves the modification of the conventional components of the Biginelli reaction and the second one refers to the postmodification of the Biginelli products. Both strategies have been extensively revised in this manuscript. Regarding the first one, initially, the modification of one of the components was covered. Although examples of modifications of the three of them were described, by far the modification of the keto ester counterpart was the most popular approach, and a wide variety of different enolizable carbonylic compounds were used; moreover, changes in two or the three components were also described, broadening the substitution of the final dihydropyrimidines. Together with these modifications, the use of Biginelli adducts as a starting point for further modification was also a very useful strategy to decorate the final heterocyclic structure.
  • 882
  • 15 Aug 2022
Topic Review
Sustainability in Cosmetic Products
Characterize particulate matter (PM) concentrations released during the application of cosmetic powders, estimate the respiratory dosage for the different cosmetic powder types, and evaluate the sustainability based on the environmental and health effects.
  • 676
  • 26 Oct 2020
Topic Review
Surface Functionalization of Magnetic Nanoparticles
The surface functionalization of magnetic nanoparticles (MNPs) has witnessed significant progress recently, revolutionizing their utility in multimodal imaging, drug delivery, and catalysis. This progression, spanning over the last decade, has unfolded in discernible phases, each marked by distinct advancements and paradigm shifts. In the early stage, emphasis was placed on foundational techniques, such as ligand exchange and organic coatings, establishing the groundwork for innovations to come.
  • 394
  • 18 Oct 2023
Topic Review
Supramolecular Self-Assembly of Antibiotics
Antibiotic resistance has posed a great threat to human health. The emergence of antibiotic resistance has always outpaced the development of new antibiotics, and the investment in the development of new antibiotics is diminishing. Supramolecular self-assembly of the conventional antibacterial agents has been proved to be a promising and versatile strategy to tackle the serious problem of antibiotic resistance.
  • 419
  • 14 Jul 2022
Topic Review
Supramolecular Hydrogels for Protein Delivery
Therapeutic proteins, such as growth factors (GFs), have been used in tissue engineering (TE) approaches for their ability to provide signals to cells and orchestrate the formation of functional tissue. However, to be effective and minimize off-target effects, GFs should be delivered at the target site with temporal control. In addition, protein drugs are typically sensitive water soluble macromolecules with delicate structure. As such, hydrogels, containing large amounts of water, provide a compatible environment for the direct incorporation of proteins within the hydrogel network, while their release rate can be tuned by engineering the network chemistry and density. Being formed by transient crosslinks, afforded by non-covalent interactions, supramolecular hydrogels offer important advantages for protein delivery applications.
  • 836
  • 04 Mar 2021
Topic Review
Structure-Based Virtual Screening
Molecular docking plays a significant role in early-stage drug discovery, from structure-based virtual screening (VS) to hit-to-lead optimization. VS is a computational approach used to identify chemical structures that are predicted to have particular properties. In drug discovery, it involves computationally searching large libraries of chemical structures to identify those structures that are most likely to bind to a target protein.
  • 1.4K
  • 04 Aug 2022
Topic Review
Structural Characteristics, Classification, and Nomenclature of Glycosphingolipids
Glycosphingolipids (GSLs) are a glycolipid subtype which plays vital roles in numerous biological processes, cell–cell interactions, as well as oncogenesis and ontogenesis. They are ubiquitous molecules found mostly in cell membranes.
  • 188
  • 11 Sep 2023
Topic Review
Structural Changes of Hydroxylapatite during Plasma Spraying
Functional osseoconductive coatings based on hydroxylapatite (HAp) and applied preferentially by atmospheric plasma spraying to medical implant surfaces are a mainstay of modern implantology. During contact with the hot plasma jet, HAp particles melt incongruently and undergo complex dehydration and decomposition reactions that alter their phase composition and crystallographic symmetry, and thus, the physical and biological properties of the coatings. Surface analytical methods such as laser-Raman and nuclear magnetic resonance (NMR) spectroscopies are useful tools to assess the structural changes of HAp imposed by heat treatment during their flight along the hot plasma jet. 
  • 443
  • 11 Mar 2022
Topic Review
Structural biology in coronavirus-receptor interaction
Mass spectrometry and some other biophysical methods, have made substantial contributions to the studies on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human proteins interactions. The most interesting feature of SARS-CoV-2 seems to be the structure of its spike (S) protein and its interaction with the human cell receptor. Mass spectrometry of spike S protein revealed how the glycoforms are distributed across the S protein surface. X-ray crystallography and cryo-electron microscopy made huge impact on the studies on the S protein and ACE2 receptor protein interaction, by elucidating the three-dimensional structures of these proteins and their conformational changes. The findings of the most recent studies in the scope of SARS-CoV-2-Human protein-protein interactions are described here.
  • 615
  • 15 Sep 2020
Topic Review
Strategies for Improving Cell-Penetrating Peptides Stability and Delivery
Peptides play an important role in many fields, including immunology, medical diagnostics, and drug discovery, due to their high specificity and positive safety profile. However, for their delivery as active pharmaceutical ingredients, delivery vectors, or diagnostic imaging molecules, they suffer from two serious shortcomings: their poor metabolic stability and short half-life. Major research efforts are being invested to tackle those drawbacks, where structural modifications and novel delivery tactics have been developed to boost their ability to reach their targets as fully functional species.
  • 653
  • 04 Nov 2022
  • Page
  • of
  • 34
Video Production Service