Topic Review
Semiconductor Materials for Photocatalytic Reduction of CO2
The photocatalytic reduction of CO2 is one of the most effective methods to control CO2 pollution. Therefore, the development of novel high-efficiency semiconductor materials has become an important research field. Semiconductor materials need to have a structure with abundant catalytic sites, among other conditions, which is of great significance for the practical application of highly active catalysts for CO2 reduction. The photocatalytic reduction of CO2 is a surface/interface reaction. It is important to find and use raw materials which are environmentally friendly and effective as catalysts.
  • 973
  • 27 May 2022
Topic Review
Semiconductor Heterogeneous Photocatalysts
Semiconductor-based photocatalytic reactions are a practical class of advanced oxidation processes (AOPs) to address energy scarcity and environmental pollution. By utilizing solar energy as a clean, abundant, and renewable source, this process offers numerous advantages, including high efficiency, eco-friendliness, and low cost.
  • 331
  • 26 Jul 2023
Topic Review
Semiconductor Gas Sensors
Semiconductor materials include metal oxides, conducting polymers, carbon nanotubes, and 2D materials. Metal oxides are most often the first choice due to their ease of fabrication, low cost, high sensitivity, and stability. Some of their disadvantages are low selectivity and high operating temperature. Conducting polymers have the advantage of a low operating temperature and can detect many organic vapors. They are flexible but affected by humidity. Carbon nanotubes are chemically and mechanically stable and are sensitive towards NO and NH3, but need dopants or modifications to sense other gases. Graphene, transition metal chalcogenides, boron nitride, transition metal carbides/nitrides, metal organic frameworks, and metal oxide nanosheets as 2D materials represent gas-sensing materials of the future, especially in medical devices, such as breath sensing.
  • 2.6K
  • 10 Dec 2020
Topic Review
Self-Sustainable Greenhouse Agriculture
It is now time for the future-generation and advanced greenhouse design practices to address a range of issues, from the energy and land use efficiency to providing plant-optimised growth techniques. In this Encyclopaedia record, we report on the practical development of spectrally selective and specialist-type  advanced metal-dielectric thin-film filters that produce the optimized illumination spectrum when exposed to natural sunlight that can help maximize the biomass productivity of coated-glass greenhouse crops. Our experimental case study has been performed for the lettuce species, Lactuca sativa, L., yielding promising results.
  • 1.5K
  • 30 Oct 2020
Topic Review
Self-sterilizing Properties of Copper
It is confirmed that copper is a self-sanitising metal, acting on human pathogens in a way that does not let them survive exposure to copper or copper alloy surfaces for any reasonable length of time. Regarding the efficacy of copper surfaces, testing in an independent microbiology laboratory has led to 300 various copper surfaces being registered with the United States Environmental Protection Agency (USEPA) in 2008. The registration includes the following statement: “When cleaned regularly, the antimicrobial copper alloy surface kills greater than 99.9% of bacteria within two hours and continues to kill more than 99% of bacteria even after repeated contamination”. This claim acknowledges that copper and its alloys brass and bronze can kill potentially deadly bacteria, and sometime later, it was further understood that copper nanoparticles (Cu-NPs) and laser textured copper also show enhanced antimicrobial activity.
  • 762
  • 06 Jul 2021
Topic Review
Self-Polymerization Mechanisms and Catalytic Reactions of PDA
Polydopamine (PDA), inspired by the adhesive mussel foot proteins, is widely applied in chemical, biological, medical, and material science due to its unique surface coating capability and abundant active sites.  Recently, PDA was introduced into Energetic Materials for the modification of crystal phase stability and the interfacial bonding effect, and, as a result, to enhance the mechanical, thermal, and safety performances.
  • 255
  • 05 Jul 2023
Topic Review
Self-Heating Mould for Composite Manufacturing
The shipbuilding industry, engine manufacturing, aviation, rocket and space technology are promising fields of application for polymeric composite materials. Shape-generating moulding tools with internal heating are used for the creation of a more economically viable method of moulding of internally heated composite structures. The use of a fine-fibered resistive structure in the heated tools allows implementation of effective heating of the composite and elimination of the need for expensive and energy-intensive heating equipment.
  • 876
  • 26 Nov 2021
Topic Review
Self-healing Polymeric Materials
The mechanism of self-healing, which includes the extrinsic and intrinsic approaches for each of the applications, is examined. The extrinsic mechanism involves the introduction of external healing agents such as microcapsules and vascular networks into the system. Meanwhile, the intrinsic mechanism refers to the inherent reversibility of the molecular interaction of the polymer matrix, which is triggered by the external stimuli. Both self-healing mechanisms have shown a significant impact on the cracked properties of the damaged sites.
  • 2.1K
  • 21 Apr 2021
Topic Review
Self-Healing Polymer, Metal, and Ceramic Matrix Composites
Composites can be divided into three groups based on their matrix materials, namely polymer, metal and ceramic. Composite materials fail due to micro cracks. Repairing is complex and almost impossible if cracks appear on the surface and interior, which minimizes reliability and material life. In order to save the material from failure and prolong its lifetime without compromising mechanical properties, self-healing is one of the emerging and best techniques. 
  • 698
  • 07 Dec 2022
Topic Review
Self-Healing of Polymeric Materials
The self-healing of damages that occur during the operation of the corresponding structures makes it possible to extend the service life of the latter, and in this case, the problem of saving non-renewable resources is simultaneously solved. Two strategies are considered: (a) creating reversible crosslinks in the thermoplastic and (b) introducing a healing agent into cracks. Bond exchange reactions in network polymers (a) proceed as a dissociative process, in which crosslinks are split into their constituent reactive fragments with subsequent regeneration, or as an associative process, the limiting stage of which is the interaction of the reactive end group and the crosslink.
  • 501
  • 15 Feb 2023
  • Page
  • of
  • 467
Video Production Service