Topic Review
Carbon Nanostructures
Carbon is a unique element of the periodic table possessing the extraordinary capability to organize its four valence electrons in different hybridization states, namely sp, sp2, sp3 leading to both strong covalent and weak π-π bonds
  • 1.1K
  • 23 Jun 2021
Topic Review
Carbon Nanotube Electrodes for Flexible Supercapacitors
Carbon nanotubes (CNTs), long recognized for their mechanical toughness, with an elastic strain limit of up to 20%, are regarded as potential candidates for FSC electrodes. Along with excellent mechanical properties, high electrical conductivity, and large surface area, their assemblage adaptability from one-dimensional fibers to two-dimensional films to three-dimensional sponges makes CNTs attractive. 
  • 912
  • 19 Aug 2022
Topic Review
Carbon Nanotube Films as Sensor Material
The photo-thermoelectric (PTE) effect in electronic materials effectively combines photo-absorption-induced local heating and associated thermoelectric conversion for uncooled and broadband photo-detection. Formation of heterogeneous material junctions across the carbon nanotube (CNT)-film-based PTE sensors, namely photo-detection interfaces, triggers the Seebeck effect with photo-absorption-induced local heating. Typical photo-detection interfaces include a channel–electrode boundary and a junction between P-type CNTs and N-type CNTs (PN junctions). While the original CNT film channel exhibits positive Seebeck coefficient values, the material selections of the counterpart freely govern the intensity and polarity of the PTE response signals. Based on these operating mechanisms, CNT film PTE sensors demonstrate a variety of physical and chemical non-destructive inspections. 
  • 323
  • 17 Jan 2023
Topic Review
Carbon Nanotube Metal Matrix Composites
Carbon nanotube metal matrix composites (CNT-MMC) are an emerging class of new materials that are being developed to take advantage of the high tensile strength and electrical conductivity of carbon nanotube materials. Critical to the realization of CNT-MMC possessing optimal properties in these areas are the development of synthetic techniques that are (a) economically producible, (b) provide for a homogeneous dispersion of nanotubes in the metallic matrix, and (c) lead to strong interfacial adhesion between the metallic matrix and the carbon nanotubes. Since the development of CNT-MMC is still in the research phase, the current focus is primarily on improving these latter two areas.
  • 988
  • 29 Sep 2022
Topic Review
Carbon Nanotube Sheet-Synthesis and Applications
 This paper gives an overview of different approaches to synthesize CNTs and then focuses on the floating catalyst method to form CNT sheets. A method is also described in this paper to modify the properties of macroscale carbon nanotube sheets produced by the floating catalyst method. This paper also discusses manufacturing obstacles and the possible commercial applications of the CNT sheet and CNTH sheet. Applications for CNT sheet include air and water filtering, energy storage applications, and compositing CNTH sheets to produce apparel with anti-microbial properties to protect the population from infectious diseases. The paper also provides an outlook towards large scale commercialization of CNT material.
  • 1.1K
  • 11 Nov 2020
Topic Review
Carbon Nanotube-Reinforced Polymer Composite
A novel class of carbon nanotube (CNT)-based nanomaterials has been surging since 1991 due to their noticeable mechanical and electrical properties, as well as their good electron transport properties. The development of CNT-reinforced polymer composites could contribute in expanding many areas of use, from energy-related devices to structural components. A CNT is defined as a one-atom thick sheet of graphite rolled into a tube with a diameter of one nanometer, which is classified as a single-wall carbon nanotube (SWCNT); if there are additional or multiple graphene tubes around the core of an SWCNT, this is known as a multiwalled carbon nanotube (MWCNT). Theoretical and experimental results on CNTs have showed a high modulus of elasticity: greater than 1 TPa (the elastic modulus of diamond is 1.2 TPa). In addition, CNTs also possess a strength that is 10–100 times higher than the resilient steel at a fraction of the weight. Additionally, CNTs have an excellent thermal stability of up to 2800 ◦C in vacuum and an electrical conductivity in the vicinity of 103 S/cm, with an electric-current-carrying capacity that is 1000 times higher and thermal conductivity of about 1900 W m−1 K−1 (which is about twice as high as diamond). SWCNTs in a hexagonal honeycomb structure consist of sp2 hybridized carbon in a that is rolled into a hollow tube morphology, while MWCNTs consist of multiple concentric tubes encircling one another.
  • 1.6K
  • 05 Aug 2021
Topic Review
Carbon Nanotubes
Carbon nanotubes are a quasi-one-dimensional nanomaterial having excellent compatibility with cementitious material. Recently several research carried out utilising different types of Carbon nanotubes (Single wall carbon nanotube, multiwall carbon nanotube, -COOH and -OH functionalised carbon nanotube etc.) to investigate its influences in terms of flowability, microstructure, mechanical, and durability properties. CNT is chemically inert material but addition of small doses of CNTs can significantly improve the mechanical and microstructural properties of concrete/cementitious composites. CNT act as nucleating agents and promote the higher growth of C-S-H. However, improvement of mechanical, microstructural  and durability properties depends on CNTs concentration, physical properties and type of CNTs. 
  • 1.1K
  • 27 Oct 2020
Topic Review
Carbon nanotubes (CNTs)
Carbon nanotubes (CNTs) are considered a promising nanomaterial for diverse applications owing to their attractive physicochemical properties such as high surface area, superior mechanical and thermal strength, electrochemical activity, and so on.
  • 1.4K
  • 10 Sep 2020
Topic Review
Carbon Nanotubes for Lead Ions
Lead is one of the most toxic heavy metals released into the environment through industrial sources. Its direct determination is often a problem due to the presence of relatively complex matrices as well as low content. Thus, the additional separation and preconcentration steps are necessary in the analytical procedures. Carbon nanotubes (CNTs) continue to attract significant interest for these purposes as they exhibit a high specific surface area, exceptional porosities, and numerous adsorption sites.
  • 288
  • 22 May 2023
Topic Review
Carbon Nanotubes in Nanocomposite Mixed-Matrix Membranes
Carbon nanotubes (CNTs) are a popular material for gas separation because their walls are naturally smooth, allowing for faster gas transit than other inorganic fillers. It also has excellent mechanical strength, allowing membranes to work under high pressure. Although CNTs have superior qualities to other inorganic fillers, incorporating them into a polymer matrix is difficult due to CNTs' strong van der Waals forces, which cause agglomeration. CNT dispersion must be addressed if the full potential of CNTs is to be realized.
  • 782
  • 17 Jun 2022
  • Page
  • of
  • 467
Video Production Service