Topic Review
Paper-Based Biosensors
The utilization of electrochemical detection techniques in paper-based analytical devices (PADs) has revolutionized point-of-care (POC) testing, enabling the precise and discerning measurement of a diverse array of (bio)chemical analytes. The application of electrochemical sensing and paper as a suitable substrate for point-of-care testing platforms has led to the emergence of electrochemical paper-based analytical devices (ePADs). The inherent advantages of these modified paper-based analytical devices have gained significant recognition in the POC field. In response, electrochemical biosensors assembled from paper-based materials have shown great promise for enhancing sensitivity and improving their range of use. In addition, paper-based platforms have numerous advantageous characteristics, including the self-sufficient conveyance of liquids, reduced resistance, minimal fabrication cost, and environmental friendliness.
  • 431
  • 17 Jul 2023
Topic Review
Biosensor Technology for Insulin Detection
Biosensor technology is a multidisciplinary field where biology, engineering and nanotechnology promise solutions for healthcare challenges enabling personalised medicine for disease prognosis, diagnosis and drug delivery. The ability to use a point-of-care sensor to measure insulin concurrently with glucose would allow for a much better assessment of endogenous insulin activity, enabling real-time adjustments in insulin dosing to be made while minimising the likelihood of occurrence of extremes of hypoglycaemia or hyperglycaemia.
  • 335
  • 17 Jul 2023
Topic Review
The Market of Antibody–Drug Conjugates
The cytotoxic effect and therapeutic window of mAbs by constructing antibody–drug conjugates (ADCs), in which the targeting moiety is the mAb that is linked to a highly toxic drug. According to a report from mid of last year, the global ADCs market accounted for USD 1387 million in 2016 and was worth USD 7.82 billion in 2022. It is estimated to increase in value to USD 13.15 billion by 2030. One of the critical points is the linkage of any substituent to the functional group of the mAb. Increasing the efficacy against cancer cells’ highly cytotoxic molecules (warheads) are connected biologically. The connections are completed by different types of linkers, or there are efforts to add biopolymer-based nanoparticles, including chemotherapeutic agents.
  • 458
  • 17 Jul 2023
Topic Review
Synthesis and Characteristics of PEDOT:PSS and PEDOT:Carrageenan
Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) has been mostly used as a counter electrode to give a high performance of dye-sensitized solar cell (DSSC). PEDOT doped by carrageenan, namely PEDOT:Carrageenan, was introduced as a new material to be applied on DSSC as an electrolyte. PEDOT:Carrageenan has a similar synthesis process as PEDOT:PSS, owing to their similar ester sulphate (-SO3H) groups in both PSS and carrageenan. 
  • 1.3K
  • 17 Jul 2023
Topic Review
TiOPhotocatalysis
Catalysis on TiO2 nanomaterials in the presence of H2O and oxygen plays a crucial role in the advancement of many different fields, such as clean energy technologies, catalysis, disinfection, and bioimplants. Photocatalysis on TiO2 nanomaterials is well-established and has advanced in the last decades in terms of the understanding of its underlying principles and improvement of its efficiency. 
  • 393
  • 17 Jul 2023
Topic Review
Lysosomes in GNM-Based Cancer Therapy
Graphene-based nanomaterials (GNMs), including graphene, graphene oxide, reduced graphene oxide, and graphene quantum dots, may have direct anticancer activity or be used as nanocarriers for antitumor drugs. GNMs usually enter tumor cells by endocytosis and can accumulate in lysosomes. This accumulation prevents drugs bound to GNMs from reaching their targets, suppressing their anticancer effects. A number of chemical modifications are made to GNMs to facilitate the separation of anticancer drugs from GNMs at low lysosomal pH and to enable the lysosomal escape of drugs. Lysosomal escape may be associated with oxidative stress, permeabilization of the unstable membrane of cancer cell lysosomes, release of lysosomal enzymes into the cytoplasm, and cell death. GNMs can prevent or stimulate tumor cell death by inducing protective autophagy or suppressing autolysosomal degradation, respectively.
  • 228
  • 14 Jul 2023
Topic Review
General Characteristics of Chitosan
Chitosan is a naturally occurring compound that can be obtained from deacetylated chitin, which is obtained from various sources such as fungi, crustaceans, and insects. Commercially, chitosan is produced from crustaceans. Based on the range of its molecular weight, chitosan can be classified into three different types, namely, high molecular weight chitosan (HMWC, >700 kDa), medium molecular weight chitosan (MMWC, 150–700 kDa), and low molecular weight chitosan (LMWC, less than 150 kDa).
  • 366
  • 14 Jul 2023
Topic Review
Synthesis of PbO Nanostructures
Black-phosphorus-analog lead monoxide (PbO), as a new emerging 2D material, has rapidly gained popularity due to its unique optical and electronic properties. Both theoretical prediction and experimental confirmation have revealed that PbO exhibits excellent semiconductor properties, including a tunable bandgap, high carrier mobility, and excellent photoresponse performance, which is undoubtedly of great interest to explore its practical application in a variety of fields, especially in nanophotonics. 
  • 269
  • 14 Jul 2023
Topic Review
Nanomaterial-Based Biosensing Strategies for Plant Pathogen Detection
Medicinal plants are constantly challenged by different biotic inconveniences, which not only cause yield and economic losses but also affect the quality of products derived from them. Among them, Alternaria pathogens are one of the harmful fungal pathogens in medicinal plants across the globe. Therefore, a fast and accurate detection method in the early stage is needed to avoid significant economic losses. Although traditional methods are available to detect Alternaria, they are more time-consuming and costly and need good expertise. Nevertheless, numerous biochemical- and molecular-based techniques are available for the detection of plant diseases, but their efficacy is constrained by differences in their accuracy, specificity, sensitivity, dependability, and speed in addition to being unsuitable for direct on-field studies. Considering the effect of Alternaria on medicinal plants, the development of novel and early detection measures is required to detect causal Alternaria species accurately, sensitively, and rapidly that can be further applied in fields to speed up the advancement process in detection strategies. In this regard, nanotechnology can be employed to develop portable biosensors suitable for early and correct pathogenic disease detection on the field. It also provides an efficient future scope to convert innovative nanoparticle-derived fabricated biomolecules and biosensor approaches in the diagnostics of disease-causing pathogens in important medicinal plants.
  • 378
  • 13 Jul 2023
Topic Review
Plant Extract-Mediated Synthesis and Characterization of Nanoparticles
Eucalyptus globulus (EG) is an endemic plant in Australia that is widely found throughout the world. It is the main source of botanical essential oils and is well-recognized in pharmacopeia around the globe. In the plant-assisted fabrication of nanoparticles, the salt solution and extract are simply mixed at room temperature or slightly high temperature, resulting in the synthesis of nanoparticles (NPs) within minutes.
  • 485
  • 13 Jul 2023
  • Page
  • of
  • 467
ScholarVision Creations