Topic Review
Surface Activation of Polytetrafluoroethylene
Fluorinated polymers are renowned for their chemical inertness and thus poor wettability and adhesion of various coatings. Apart from chemical methods employing somewhat toxic primers, gaseous plasma treatment is a popular method for the modification of surface properties. Different authors have used different plasmas, and the resultant surface finish spans between super-hydrophobic and super-hydrophilic character.
  • 683
  • 19 Oct 2020
Topic Review
Surface Acoustic Wave Sensors Materials
Since their development, surface acoustic wave (SAW) devices have attracted much research attention due to their unique functional characteristics, which make them appropriate for the detection of chemical species. The scientific community has directed its efforts toward the development and integration of new materials as sensing elements in SAW sensor technology with a large area of applications.
  • 1.2K
  • 28 Jun 2021
Topic Review
Supramolecular Self-Assembly of Antibiotics
Antibiotic resistance has posed a great threat to human health. The emergence of antibiotic resistance has always outpaced the development of new antibiotics, and the investment in the development of new antibiotics is diminishing. Supramolecular self-assembly of the conventional antibacterial agents has been proved to be a promising and versatile strategy to tackle the serious problem of antibiotic resistance.
  • 450
  • 14 Jul 2022
Topic Review
Supramolecular Polymer Nanocomposites
Polymer nanocomposites, a class of innovative materials formed by polymer matrixes and nanoscaled fillers (e.g., carbon-based nanomaterials, inorganic/semiconductor nanoparticles, metal/metal-oxide nanoparticles, polymeric nanostructures, etc.), display enhanced mechanical, optoelectrical, magnetic, catalytic, and bio-related characteristics, thereby finding a wide range of applications in the biomedical field. In particular, the concept of supramolecular chemistry has been introduced into polymer nanocomposites, which creates myriad “smart” biomedical materials with unique physicochemical properties and dynamic tunable structures in response to diverse external stimuli. 
  • 765
  • 25 Feb 2021
Topic Review
Supramolecular Liquid Crystals
liquid crystal (LC) state, specific orientations and alignments of LC molecules produce outstanding anisotropy in structure and properties, followed by diverse optoelectronic functions.
  • 1.0K
  • 09 Jul 2021
Topic Review
Supramolecular Hydrogels for Protein Delivery
Therapeutic proteins, such as growth factors (GFs), have been used in tissue engineering (TE) approaches for their ability to provide signals to cells and orchestrate the formation of functional tissue. However, to be effective and minimize off-target effects, GFs should be delivered at the target site with temporal control. In addition, protein drugs are typically sensitive water soluble macromolecules with delicate structure. As such, hydrogels, containing large amounts of water, provide a compatible environment for the direct incorporation of proteins within the hydrogel network, while their release rate can be tuned by engineering the network chemistry and density. Being formed by transient crosslinks, afforded by non-covalent interactions, supramolecular hydrogels offer important advantages for protein delivery applications.
  • 907
  • 04 Mar 2021
Topic Review
Supramolecular Combination Therapy Based on Metal Coordination Complexes
Supramolecular combination therapy adopts supramolecular materials to design intelligent drug delivery systems with different strategies for cancer treatments. Thereinto, macrocyclic supramolecular materials play a crucial role in encapsulating anticancer drugs to improve anticancer efficiency and decrease toxicity towards normal tissue by host–guest interaction. Biomacromolecule drugs have become one of the important medications for the therapeutics of human diseases. The choice of an adequate drug delivery method is essential to ensuring the therapeutic efficacy of biomacromolecule medications in vivo due to the high tendency of biomacromolecule pharmaceuticals to degrade in the human body.
  • 648
  • 18 Nov 2022
Topic Review
Supramolecular Chemistry: Host–Guest Molecular Complexes
The host–guest (HG) interactions in two-dimensional (2D) permeable porous linkages are growing expeditiously due to their future applications in biocatalysis, separation technology, or nanoscale patterning. In host–guest (HG) interaction, distinctive structural complexes development occurs via non-covalent associations. There is a growing curiosity in executing supramolecular HG structures for assembling organic solvents and aqueous solutions on compact planes.
  • 869
  • 09 Jul 2021
Topic Review
Supramolecular Aggregates
Supramolecular Aggregates cross several disciplines, embracing the sciences of nature and joining theory, experiment, and application, from molecular to macroscopic levels. The problems of interdisciplinarity are overcome initially with scientific divulgation, bringing concepts from their origin, to facilitate the access of young scientists to the scientific content. Next, focus on some basic principles can help to understand the non trivial connections between Physics, Chemistry and Biology. 
  • 1.1K
  • 03 Aug 2021
Topic Review
Supported Lonic Liquids Used as Chromatographic Matrices
Ionic liquids (ILs) have been investigated as novel ligands in chromatographic matrices, denominated as supported ionic liquids (SILs). ILs are organic salts with a wide structural diversity, which can display a multi-modal behavior because they present positive/negative charged groups, and can be tailored by the introduction of several functional groups and alkyl moieties of different lengths. SILs maintain the valuable features of ILs with the addition of being supported, thus avoiding the use of large amounts of ILs. Despite the fact that the liquid state of ILs is being lost when immobilized, their capability to establish a plethora of interactions is kept, allowing them to be used in hydrophilic, hydrophobic, affinity, multi-modal and ion-exchange chromatography. Due to their advantages, IL-modified materials have been recently synthetized and proven to be an important new type of stationary phases in liquid chromatography.
  • 352
  • 22 Mar 2022
  • Page
  • of
  • 467
Video Production Service