Topic Review
Nanocellulose from Agricultural Wastes
Nanocellulose-based composites are characterized for being highly biocompatible and scarcely toxic, which are the the major reasons for its use in numerous biomedical applications. Incorporation of nanocellulose to drug delivery systems could control both the manner drugs are released and the interactions with target molecules, thus increasing the effectiveness of drug administration. Changes on nanocellulose surface must be carried out to link drugs, non-ionic chemicals with hydrophobic character, to the nanopolymer.
  • 1.0K
  • 18 Sep 2021
Topic Review
Clay Bricks
Clay bricks are extensively used as building material worldwide. Natural soil deposits are in constant reduction due to the frequent use of clay to manufacture bricks. About 1600 billion bricks are produced annually by the consumption of millions of tons of natural resources.
  • 7.6K
  • 18 Sep 2021
Topic Review
Hydrogen Economy
Environmental issues make the quest for better and cleaner energy sources a priority. Worldwide, researchers and companies are continuously working on this matter, taking one of two approaches: either finding new energy sources or improving the efficiency of existing ones. Hydrogen is a well-known energy carrier due to its high energy content, but a somewhat elusive one for being a gas with low molecular weight. The so-called "Hydrogen Economy" is based on the use of hydrogen as an energy source. This entry examines the current electrolysis processes for obtaining hydrogen, with an emphasis on alkaline water electrolysis.
  • 2.1K
  • 18 Sep 2021
Topic Review
Ga Based Particles/Alloys/Composites
Liquid metal (LM) materials, including pure gallium (Ga) LM, eutectic alloys and their composites with organic polymers and inorganic nanoparticles, are cutting-edge functional materials owing to their outstanding electrical conductivity, thermal conductivity, extraordinary mechanical compliance, deformability and excellent biocompatibility. The unique properties of LM-based materials at room temperatures can overcome the drawbacks of the conventional electronic devices, particularly high thermal, electrical conductivities and their fluidic property, which would open tremendous opportunities for the fundamental research and practical applications of stretchable and wearable electronic devices. Therefore, research interest has been increasingly devoted to the fabrication methodologies of LM nanoparticles and their functional composites.
  • 463
  • 17 Sep 2021
Topic Review
Seaweed Polysaccharide Based Products/Materials
Among the various natural polymers, polysaccharides are one of the oldest biopolymers present on the earth. They play a very crucial role in the survival of both animals and plants. Due to the presence of hydroxyl functional groups in most of the polysaccharides, it is easy to prepare their chemical derivatives. Several polysaccharide derivatives are widely used in a number of industrial applications. The polysaccharides such as cellulose, starch, chitosan, etc. have several industrial applications but due to some distinguished characteristic properties, seaweed polysaccharides are preferred in a number of applications.
  • 1.9K
  • 17 Sep 2021
Topic Review
Microelectronics for E-Textile
Modern electronic textiles are moving towards flexible wearable textiles, so-called e-textiles that have micro-electronic elements embedded onto the textile fabric that can be used for varied classes of functionalities. There are different methods of integrating rigid microelectronic components into/onto textiles for the development of smart textiles, which include, but are not limited to, physical, mechanical, and chemical approaches. The integration systems must satisfy being flexible, lightweight, stretchable, and washable to offer a superior usability, comfortability, and non-intrusiveness. Furthermore, the resulting wearable garment needs to be breathable.
  • 1.2K
  • 17 Sep 2021
Topic Review
Lignocellulosic biomass Greener Pretreatment Approaches
The utilization of lignocellulosic biomass in various applications has a promising potential as advanced technology progresses due to its renowned advantages as cheap and abundant feedstock. The main drawback in the utilization of this type of biomass is the essential requirement for the pretreatment process. The most common pretreatment process applied is chemical pretreatment. However, it is a non-eco-friendly process. 
  • 949
  • 17 Sep 2021
Topic Review
Taccalonolides
Taccalonolides are a new class of microtube-stabilizing agents isolated from plants of the genus Tacca demonstrating effectiveness against drug-resistant tumors in cellular and animal models.
  • 550
  • 16 Sep 2021
Topic Review
Enzymes in/on Metal-Organic Framework Materials
The industrial use of enzymes generally necessitates their immobilization onto solid supports. The well-known high affinity of enzymes for metal-organic framework (MOF) materials, together with the great versatility of MOFs in terms of structure, composition, functionalization and synthetic approaches, has led the scientific community to develop very different strategies for the immobilization of enzymes in/on MOFs. This review focuses on one of these strategies, namely, the one-pot enzyme immobilization within sustainable MOFs, which is particularly enticing as the resultant biocomposite Enzyme@MOFs have the potential to be: (i) prepared in situ, that is, in just one step; (ii) may be synthesized under sustainable conditions: with water as the sole solvent at room temperature with moderate pHs, etc.; (iii) are able to retain high enzyme loading; (iv) have negligibleprotein leaching; and (v) give enzymatic activities approaching that given by the corresponding free enzymes. Moreover, this methodology seems to be near-universal, as success has been achieved with different MOFs, with different enzymes and for different applications. So far, the metal ions forming the MOF materials have been chosen according to their low price, low toxicity and, of course, their possibility for generating MOFs at room temperature in water, in order to close the cycle of economic, environmental and energy sustainability in the synthesis, application and disposal life cycle.
  • 812
  • 16 Sep 2021
Topic Review
VNPs for Anti-Cancer Therapy
Naturally occurring viral nanomaterials have gained popularity owing to their biocompatible and biodegradable nature. Plant virus nanoparticles (VNPs) can be used as nanocarriers for a number of biomedical applications. Plant VNPs are inexpensive to produce, safe to administer and efficacious as treatments. Features which distinguish plant viruses from synthetic nanocarriers include stability, flexibility, diversity in shape and size for use in drug delivery and the nontoxic nature of plant viruses in humans. Cancer is one of the most common death causing disease worldwide and it is characterized by uncontrolled rapid cell division and differentiation. VNPs are an ideal choice to apply for cancer treatment owing to the enhanced permeation and retention (EPR) potential of cancer cells for these nanoparticles, whereas VNPs cannot penetrate through healthy tissues due to tightly packed endothelial cells.
  • 698
  • 16 Sep 2021
  • Page
  • of
  • 467
ScholarVision Creations