Topic Review
High-Capacity Ni-Rich Cathode Materials for Lithium-Ion Batteries
Lithium-ion batteries are undoubtedly known as the most promising rechargeable batteries. Ternary Ni-rich Li[NixCoyMnz]O2 and Li[NixCoyAlz]O2 cathode materials stand as the ideal candidate for a cathode active material to achieve high capacity and energy density, low manufacturing cost, and high operating voltage.
  • 497
  • 19 Feb 2024
Topic Review
High Temperature Tribology
High temperature tribology is considered to begin from a minimum temperature of 300–350 °C, where organic base oils and polymers begin to decompose, until a temperature of 1000 °C. In this field of tribology, tests are typically run under dry or solid-state friction, unless a solid lubricant is used, since most lubricants will oxidize or break down when exposed to these extreme temperatures. Therefore, this form of tribotesting is useful to determine the friction, wear, and other tribological characteristics of coatings, ceramics, alloys, cermets, and similar materials.
  • 1.2K
  • 30 Apr 2021
Topic Review
High Pressure Macromolecular Crystallography
Since its introduction in the early 1970s, high pressure crystallography (HPX) has shown great potential for the investigation of different types of matter. Using diamond anvil cells, HPX is an emerging technique that has been rapidly implemented, making it available to biologists, and there is immense potential for utilizing this technique in biological systems in the future. At the molecular level, high-pressure crystallographic investigation provides information on structural characteristics that not only determine the native conformation of a protein but also the conformations with higher free-energy, thus revealing function-related structural changes and properties that can be modified as a result of pressurization. The increase in the number of crystal structures of different macromolecules determined under high pressure over the last five decades can be ascribed mainly to two factors: the emergence of high-pressure cells with very large, open angles, and the advent of third generation synchrotron sources. The use of high pressure crystallography as a research tool has been shown to contribute to the advancements in the basic fields of biochemistry (protein misfolding and aggregation), biophysics (protein stability), and biotechnology (food processing).
  • 1.8K
  • 04 Apr 2023
Topic Review
High Performance Polymer Composites
Summarize data on the structure, mechanical and tribological properties, and wear patterns of composites based on high-performance polymers (HPPs) intended for use in friction units. The three key sections, divided according to the tribological contact schemes regardless of the polymer matrix. In the second part, the analysis of composites is carried out in point contacts. The third section is devoted to the results of studies of HPP-based composites in linear ones. The fourth section summarizes information on flat contacts. Particular attention is paid to the formation of transfer films (TFs) in the contacts and their influence on the tribological patterns of the studied rubbing materials.
  • 1.1K
  • 16 Mar 2022
Topic Review
High Performance Liquid Chromatography with Fluorescence Detection Methods
Steroids are compounds widely available in nature and synthesized for therapeutic and medical purposes. Although several analytical techniques are available for the quantification of steroids, their analysis is challenging due to their low levels and complex matrices of the samples. The efficiency and quick separation of the high performance liquid chromatography (HPLC) combined with the sensitivity, selectivity, simplicity, and cost-efficiency of fluorescence, make HPLC coupled to fluorescence detection (HPLC-FLD) an ideal tool for routine measurement and detection of steroids.
  • 2.0K
  • 01 Aug 2022
Topic Review
High Performance Bioplastics
Biomass provides a wealth of renewable and bio-waste resources for bioplastics synthesis. Many of these bio-based plastics, encompass capacities for biodegradation and bioprocessing with high performance features akin to petroleum-based plastics. The realisation of bioplastics that exhibit a complete set of mechanical and biodegradability, hold the promise of delivering material of ecologically sustainable, low carbon footprint circularity.
  • 1.1K
  • 14 Jul 2021
Topic Review
Hierarchical Design of Textile-Based Sensor in Wearable Electronics
Smart textiles have recently aroused tremendous interests over the world because of their broad applications in wearable electronics, such as human healthcare, human motion detection, and intelligent robotics. Sensors are the primary components of wearable and flexible electronics, which convert various signals and external stimuli into electrical signals. While traditional electronic sensors based on rigid silicon wafers can hardly conformably attach on the human body, textile materials including fabrics, yarns, and fibers afford promising alternatives due to their characteristics including light weight, flexibility, and breathability. Of fundamental importance are the needs for fabrics simultaneously having high electrical and mechanical performance. 
  • 491
  • 31 May 2022
Topic Review
Hierarchical Ceramide Microcapsules
As a main component of the stratum corneum, ceramides can construct protective lamellae to provide an epidermal barrier against dehydration or external microorganisms. However, as ceramide molecules can easily form the isolated crystalline phase through self-assembly due to the amphipathic nature of bioactive lipids, the effective incorporation of ceramides into liquid media is the remaining issue for controlled release. Here, we report an unprecedented effective strategy to fabricate a completely amorphous and highly sustainable hierarchical ceramide polymer microcapsule for promising epidermal barrier by using the interpenetrating and cooperative self-construction of conical amphiphiles with a different critical packing parameter. The self-constructed amorphous architecture of ceramides in polymer microcapsule is achieved by the facile doping of conical amphiphiles and subsequent in situ polymerization of shell polymer in the core-shell geometry. It is experimentally revealed that an irregular cooperative packing structure formed by adaptive hydrophobic–hydrophilic interactions of cylindrical ceramides and conical amphiphiles in the confined microcapsule geometry enables a completely amorphous morphology of ceramides to be realized during the spontaneous encapsulation process. Furthermore, this elegant approach affords a highly dispersible and uniform hierarchical amorphous ceramide microcapsule with a greatly enhanced long-term stability compared to conventional crystalline ceramides.
  • 542
  • 10 Nov 2020
Topic Review
Hexadehydro Diels-Alder Reaction
In organic chemistry, the hexadehydro-Diels-Alder (HDDA) reaction is an organic chemical reaction between a diyne (2 alkyne functional groups arranged in a conjugated system) and an alkyne to form a reactive benzyne species, via a [4+2] cycloaddition reaction. This benzyne intermediate then reacts with a suitable trapping agent to form a substituted aromatic product. This reaction is a derivative of the established Diels-Alder reaction and proceeds via a similar [4+2] cycloaddition mechanism. The HDDA reaction is particularly effective for forming heavily functionalized aromatic systems and multiple ring systems in one synthetic step.
  • 417
  • 18 Oct 2022
Topic Review
Heteronuclear Metal Complexes with Anticancer Activity
Transition metal complexes have been deeply studied for different applications, such as catalysis, antimicrobial, and also antitumoral drugs. Platinum complexes are probably the most well-known and studied in the field of anticancer compounds, also thanks to the omnipresence of cisplatin and its derivatives as a starting point. Two promising new strategies to increase the efficacy of transition metal-based complexes have been described. First, the possibility of assembling two biologically active fragments containing different metal centres into the same molecule were considered, thus obtaining a heterobimetallic complex. Secondly, the conjugation of metal-based complexes to a targeting moiety was discussed.
  • 565
  • 09 Jan 2023
  • Page
  • of
  • 467
ScholarVision Creations