Topic Review
Synthetic Applications of Lawesson’s Reagent in Organic Synthesis
Lawesson’s reagent (LR) is a well-known classic example of a compound with unique construction and unusual chemical behavior, with a wide range of applications in synthetic organic chemistry. Its main functions were rounded for the thionation of various carbonyl groups in the early days. Now its use can help the chemistry community to understand innovative ideas. These include constructing biologically valuable heterocycles, coupling reactions, and the thionation of natural compounds.
  • 2.5K
  • 27 Nov 2021
Topic Review
Semiconductor Gas Sensors
Semiconductor materials include metal oxides, conducting polymers, carbon nanotubes, and 2D materials. Metal oxides are most often the first choice due to their ease of fabrication, low cost, high sensitivity, and stability. Some of their disadvantages are low selectivity and high operating temperature. Conducting polymers have the advantage of a low operating temperature and can detect many organic vapors. They are flexible but affected by humidity. Carbon nanotubes are chemically and mechanically stable and are sensitive towards NO and NH3, but need dopants or modifications to sense other gases. Graphene, transition metal chalcogenides, boron nitride, transition metal carbides/nitrides, metal organic frameworks, and metal oxide nanosheets as 2D materials represent gas-sensing materials of the future, especially in medical devices, such as breath sensing.
  • 2.5K
  • 10 Dec 2020
Topic Review
Seed Priming
Seed nano-priming is an efficient process that can change seed metabolism and signaling pathways, affecting not only germination and seedling establishment but also the entire plant lifecycle.
  • 2.5K
  • 13 Jan 2022
Topic Review
Product-Based Learning
The traditional teaching-learning process in higher education employs strategies that position students as recipients of information transmitted by the teacher, which is conceptualized as knowledge. However, the reality in which we live, including new generational groups’ characteristics, requires implementing training solutions that meet individuals' needs in the development of skills or know-how. Thus, deploying suitable solutions to society through a framework that forms individuals capable of continuously seeking knowledge, creating and innovating, is crucial. The "Reproduction of an Environment of Innovation in the Classroom" (RAIS) is a product-based learning and evaluation strategy where the student is actively involved in constructing and generating knowledge. It allows developing the programmatic competencies in engineering courses to attain a feasible product. The RAIS strategy has been applied in Physical chemistry for Chemical Engineers and Industrial Chemistry courses. Students successfully formulated a product using the know-how attained in each course. In addition, this strategy increased motivation compared to other traditional courses, developing the ability to deploy and find solutions in work environments with multidisciplinary groups.  
  • 2.5K
  • 13 Jan 2023
Topic Review
Reaction Mechanism of CO2 Methanation
The combustion of fossil fuels has led to a large amount of carbon dioxide emissions and increased greenhouse effect. Methanation of carbon dioxide can not only mitigate the greenhouse effect, but also utilize the hydrogen generated by renewable electricity such as wind, solar, tidal energy, and others, which could ameliorate the energy crisis to some extent. Highly efficient catalysts and processes are important to make CO2 methanation practical. Although noble metal catalysts exhibit higher catalytic activity and CH4 selectivity at low temperature, their large-scale industrial applications are limited by the high costs. Ni-based catalysts have attracted extensive attention due to their high activity, low cost, and abundance. At the same time, it is of great importance to study the mechanism of CO2 methanation on Ni-based catalysts in designing high-activity and stability catalysts.
  • 2.5K
  • 07 Mar 2022
Topic Review
Milk Fat Globule Membrane (MFGM)
Milk fat globule membrane (MFGM) is an important component of milk lipids that showed several biological properties (such as anticarcinogenic, antimicrobial, anti-inflammatory, and anticholesterolemic activities). In this review we analyse the latest results obtained from comparative proteomic studies regarding the variations and the similarities of MFGM proteome across species and lactation stages. Infant formula supplementation with MFGM represents an interesting opportunity to implement the bioactive properties exerted by MFGM, in order to narrow the gap between human breast milk and infant formula. 
  • 2.5K
  • 27 Sep 2020
Topic Review
Poly (Butylene Succinate) and PBS Copolyesters Degradation
The impact of plastics on the environment can be mitigated by employing biobased and/or biodegradable materials (i.e., bioplastics) instead of the traditional “commodities”. Poly (butylene succinate) (PBS) emerges as one of the most promising alternatives due to its good mechanical, thermal, and barrier properties, making it suitable for use in a wide range of applications. Nevertheless, less information regarding PBS biodegradation is available, as research is still ongoing. PBS degradation methods include hydrolytic degradation, enzymatic degradation, and biodegradation in environmental conditions, such as burial, activated sludge, and compost.
  • 2.5K
  • 22 Mar 2022
Topic Review
Modified Starch-Based Adhesives
Consumer trends towards environmentally friendly products are driving plastics industries to investigate more benign alternatives to petroleum-based polymers. In the case of adhesives, one possibility to achieve sustainable production is to use non-toxic, low-cost starches as biodegradable raw materials for adhesive production. While native starch contains only hydroxyl groups and has limited scope, chemically modified starch shows superior water resistance properties for adhesive applications. Esterified starches, starches with ester substituents, can be feasibly produced and utilized to prepare bio-based adhesives with improved water resistance. Syntheses of esterified starch materials can involve esterification, transesterification, alkylation, acetylation, succinylation, or enzymatic reactions.
  • 2.5K
  • 31 May 2022
Topic Review
Elongational Flow
Elongational flow is a particular kind of flow involved in many industrially relevant processing operations of thermoplastics (such as fiber spinning, film blowing, foaming and thermoforming) in which the velocity gradient develops in the same direction as the flow itself.
  • 2.5K
  • 26 Oct 2021
Topic Review
Sugar Based Surfactants
Sugar-based surfactants are a class of surfactants derived from natural sugars, such as glucose, sucrose, and maltose. These surfactants have gained significant interest in recent years due to their biodegradability, low toxicity, and high compatibility with biological systems. Sugar-based surfactants are classified into two main groups: alkyl polyglucosides (APGs) and saccharide fatty acid esters (SFAEs). APGs are produced by reacting a fatty alcohol with glucose, while SFAEs are produced by esterifying a sugar molecule with a fatty acid. APGs have excellent cleaning and foaming properties and are used in a variety of personal care and household products, including shampoos, body washes, and dishwashing detergents. SFAEs are mainly used in the food industry as emulsifiers and stabilizers. One of the main advantages of sugar-based surfactants is their biodegradability, which means that they break down into harmless substances when exposed to environmental conditions such as sunlight, water, and microorganisms. This makes them an attractive alternative to synthetic surfactants, which can persist in the environment for a long time and have negative impacts on ecosystems.
  • 2.5K
  • 24 Mar 2023
  • Page
  • of
  • 467
Video Production Service